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Abstract
This paper explores the use of TTS synthesized training data

for KWS (keyword spotting) task while minimizing development
cost and time. Keyword spotting models require a huge amount
of training data to be accurate, and obtaining such training data
can be costly. In the current state of the art, TTS models can
generate large amounts of natural-sounding data, which can help
reducing cost and time for KWS model development. Still, TTS
generated data can be lacking diversity compared to real data. To
pursue maximizing KWS model accuracy under the constraint of
limited resources and current TTS capability, we explored vari-
ous strategies to mix TTS data and real human speech data, with
a focus on minimizing real data use and maximizing diversity
of TTS output. Our experimental results indicate that relatively
small amounts of real audio data with speaker diversity (100
speakers, 2k utterances) and large amounts of TTS synthesized
data can achieve reasonably high accuracy (within 3x error rate
of baseline), compared to the baseline (trained with 3.8M real
positive utterances).
Index Terms: keyword spotting, TTS synthesized training data

1. Introduction
The keyword spotting (KWS) task is to detect spoken keywords
while rejecting background speech and noise. KWS has become
an important mechanism for activating conversational human-
computer interfaces since the advances in ASR. Representative
examples include virtual assistants like Alexa, Siri, and Google
Assistant, where KWS technology is used to start user-assistant
interaction [1–3].

A production level KWS system must cover a huge vari-
ety of conditions due to the diversity of populations, pronun-
ciations, and acoustic environments. Also, keyword spotting
models should be “always on”—ideally strictly causal for low
latency, and with a small computational footprint to limit energy
consumption. To meet these requirements, there has been sub-
stantial KWS research using neural networks. Prior work has
shown significant quality improvement and latency reduction in
low-resource settings [1–12].

Production level KWS models are usually trained with large
amounts of training data to cover the wide diversity of pronunci-
ation and acoustic environments. Gathering audio data specific
to a target keyword incurs significant cost, as it requires human
contributors to generate audio recordings.

Recent advancements in TTS (Text To Speech) allow gen-
eration of realistic audio at low cost. This has inspired many
applications of generated data for the ASR domain [13–19]. For
ASR, TTS models enable the use of text-only data, which is
much more abundant than labeled audio. This benefit often leads
to improved accuracy and reduced data cost.

Following the success in ASR, there have been efforts to
utilize TTS-generated data for KWS [20, 21]. Lin et al proposed
to pre-train an embedding model with real data, and fine-tune
attached classifier head models using limited amounts of TTS or
real data [20]. Werchniak et al showed initial exploration of TTS
data usage for single keyword detection problem [21] where
mixing real and TTS data gave the best results.

The current state of the art TTS models can generate large
amounts of synthetic data that sound natural to the human ear,
but the generated data distribution may not match the distribution
of real data. To address this mismatch, we propose TTS-based
KWS model training strategies, based on three key components.

Firstly we develop a text generator that generates text
phrases tailored for KWS training. The text generator is de-
signed to maximize diversity of TTS synthesized output. Sec-
ondly, we utilize state of the art TTS modules that can synthesize
speech with large number of voices. The TTS modules provide
a large number of pre-trained voices, and support the generation
of personalized voices based on input audio.

Finally, we evaluate various strategies to mix synthetic TTS
data and real human speech data, with a focus of minimizing
data cost while maximizing quality. To minimize cost and time
for KWS model development, we evaluated mixing options that
uses as small amount of real data as possible, while using large
amounts of TTS generated data.

The contributions of this paper are : (1) We explore KWS
model training using large amounts of synthetic data and mini-
mum amounts of real data to achieve comparable accuracy to the
baseline which uses large scale real positive data. (2) We also
provide reports on trade off relationship between amount of used
real data and model accuracy in multiple sweep conditions. (3)
We propose a text generator that creates TTS input texts tailored
to maximize diversity of TTS output by utilizing experimental
prosody control feature of Virtuoso TTS (section 4.1).

2. Related works
For improved data diversity, we use two different TTS models.

2.1. Virtuoso TTS

Virtuoso is a multilingual speech-text joint training model that
can learn from untranscribed speech, unspoken text, and paired
speech-text data sources [22, 23]. This model is capable of
generating speech in 139 languages for 726 predefined speaker
profiles. We used the simple text-to-speech mode of the Virtuoso
model. Given a transcript, the model can generate an utterance
for a target language from a designated speaker, with randomized
prosody. Experiments with Virtuoso TTS model indicates that
punctuation symbols in the text input can be used to control
the prosody of the synthesized speech, and we leverage this



Figure 1: Baseline KWS model architecture

capability of the Virtuoso model to augment our synthesized
data.

2.2. AudioLM TTS

AudioLM is an audio generative language model that features
long term coherence and high quality [24]. We used a variant of
AudioLM-based TTS model that can be conditioned by text and
audio, with the key feature of synthesizing audio while retaining
the speaker’s characteristics and prosody of the input audio [25].
The diversity of the generated dataset is able to match a rich
variety of real human audio prompts.

3. Baseline keyword spotting model
3.1. Input features

In this study, we followed the lead of previous research [3,6] and
employed the same input features. Specifically, we extracted a
40-dimensional vector of spectral filterbank energies (calculated
over a 25-millisecond window) at every 10-millisecond time
frame. To create a 120-dimensional input feature vector Xt for
every 20 milliseconds, we stacked and strided three consecu-
tive frames. To enhance the model’s resilience and adaptability,
we incorporated data augmentation techniques. We followed
the approach in [26], applying established methods like simu-
lated reverberation and noise mixing to the data before feature
extraction.

3.2. Architecture

We employed a two-stage model architecture (Fig. 1), as out-
lined in previous work [3, 6]. This architecture comprises seven
factored convolution layers (also known as SVDF [3]) and three
bottleneck projection layers, organized into encoder and decoder
sub-modules connected sequentially. The model is optimized for
streaming inference, and has roughly 320,000 parameters.

The encoder module takes as input Xt, a vector of stacked
spectral filter-bank energies representing the audio features. It
then produces an N -dimensional encoder output Y E, which is
designed to encapsulate N phoneme-like sound units crucial for
keyword recognition. This encoded representation is then passed
to the decoder module, which generates a 2-dimensional output
Y D trained to predict the presence or absence of the keyword
within the audio stream. The final prediction logit, denoted as Y,
combines both the encoder and decoder outputs: Y = [Y E, Y D].
This unified representation enables robust keyword spotting in
diverse audio environments.

3.3. Supervised training objective

The baseline training approach leverages two types of supervised
losses (Eq. 1). The first loss term directly calculates the cross-
entropy between model logits and labels, following the method
established in [3]. The second loss term computes the cross-
entropy between max-pooled logits and labels, as introduced

Figure 2: Proposed KWS approach with TTS generated data

in [6]. Both loss terms have distinct components for the encoder
and decoder modules, and a weighted combination of these
components forms the final loss.

The top level loss is a weighted combination of the cross-
entropy and max-pooled losses (Eq. 1). This combination helps
prevent overfitting and improves the model’s ability to perform
well on unseen data, ultimately enhancing its robustness and
effectiveness in keyword spotting tasks.

Lsup =
∑

t=1..n

[(1− α)LCE (Y (Xt, θ), ct)

+ αLMP (Y (Xt, θ), ωend)]

(1)

Y (Xt, θ) denotes the combined encoder and decoder model
output given input Xt and parameter set θ. LCE represents the
end-to-end loss proposed in Alvarez [3]. We use the implemen-
tation as defined by Eq. 2 in Park et al. [6] where ct is the
per-frame target label for CE-loss. LMP represents the max-pool
loss proposed in Park et al. [6], which was defined by Eq. 12.
ωend represents the end-of-keyword position label for the max-
pool loss. α is a loss-weighting hyper-parameter determined
empirically. Refer to [3, 6] for details of LMP and LCE.

4. Proposed approach
Fig. 2 shows the high level view of the proposed TTS based
KWS training approach. In this approach, the baseline KWS
model can take input audio examples from either real speech
data or TTS generated data sources. We explore training recipes
that mix both real and synthesized data. The mixing ratio is a
hyper-parameter which we explore in sweep experiments. We
use TTS models that can generate speech samples in various
speaker types and locales. The TTS models are conditioned
by both speaker information and text. Speaker information can
be either an index of the prefixed speaker (Virtuoso), or audio
samples from any speaker (AudioLM). Text input to TTS is gen-
erated by a text generator, which combines target keyword and
randomized negative text from a text corpus depending on target
label (positive or negative). Details of the major components of
the proposed approach are discussed below.

4.1. Text augmentation by text generator

We introduces a text generator module, which generates positive
or negative phrase examples given target label (pos/neg), target
keywords (for example, “hey google” or “ok google”) and a
random text corpus (which constitutes negative phrases in the
form of user queries following the keyword).

We define a keyword as a combination of prefix and
key_name (keyword := (prefix, key_name)). For example
prefix can be "Hey" and key_name can be "Google". Based
on given keyword (prefix and key_name) and random query text,
we build a positive phrase by concatenating. Negative phrases



can be constituted by using any textual corpus and filter out the
keyword. We also randomly add some prosody control symbols
(Table 1) to vary the TTS output. Those prosody control symbols
are experimental features of Virtuoso TTS model. We first define
a set of text templates with variables (prefix, key_name, and
query) and prosody control symbols (Table 2). Variables can be
replaced with actual provided texts. Then those text templates
are randomly sampled to generate TTS input texts.

Table 1: Prosody control symbols

Controlled texts Effects
text default pronunciation of text

(text) speak text slowly
text: insert pause after text
text? increase pitch at the end of text
text! speak text loudly

Table 2: Text generation templates

Text templates Notes
{prefix} {key_name} {query} positive phrase

{prefix} ({key_name}) {query} positive phrase
({prefix}): ({key_name}) {query} positive phrase
{prefix}: ({key_name})? {query} positive phrase
{prefix}: {key_name}! {query} positive phrase

{query} negative phrase

4.2. TTS data generation by Personalizable TTS

The TTS models used in our approach provide capabilities to
generate diverse and personalized speech. The Virtuoso system
supports 726 pretrained high quality speakers. AudioLM-based
TTS model can generate speech with a voice matching with the
input audio example. We maximally utilize such personalization
capability of the TTS to generate training examples with diverse
voices.

Also Virtuoso is highly multilingual model supporting 139
languages. We also utilize this feature to generate speech with
different language targets from fixed English phrases. The re-
sulting TTS output sounds like an accented version of English,
adding diversity to the synthesized output.

4.3. TTS and Real data mixing strategy

Although current state of the art TTS can generate realistic hu-
man speech, the distribution of TTS generated data and real
speech data might mismatch. TTS generated data might still
have artifacts that does not exist in real speech recordings, and it
might not generate all the variations present in real speech. To
compensate for such mismatch we explore the strategy of mixing
real data with TTS based data, by training models with various
data mixing options, and evaluate them on real data.

5. Experimental Setup
5.1. Input Data

We trained KWS models for "Hey/OK Google" detection task
using real and synthesized data. For real speech data, we used

anonymized utterances collected in accordance to Google’s Pri-
vacy and AI Principles [27, 28]. TTS data is generated using
Virtuoso and AudioLM variant TTS models. Multi-style data
augmentation [29] is applied during training. Table 3 summa-
rizes the number of utterances used. TTS data numbers include
both Virtuoso and AudioLM sources.

Table 3: Data types and sizes

Data Types Utterance counts
Real Positive Utts 3.8 M
Real Negative Utts 14.1 M
Synthesized Positive Utts 7.5 M
Synthesized Negative Utts 5.1 M

5.2. Evaluation Data and Metric

We evaluate the model performance on real Hey/OK Google data
sets. Our primary metric to compare model performance is false
reject rate (FRR) and the model threshold is selected to optimize
FRR while keeping the maximum allowed false accept per hour
fixed at 0.133 which is a typical operational condition.

5.3. Different experiment sweeps

• Baseline model performance on different data-sets
In this experiment, we aim to establish the baseline metric
scores when the model is trained on different data-sets includ-
ing synthesized and real data.
We also explore addition of real negative data. Obtaining
positive data, is constrained by the selected the key-word(s)
while negative data can be obtained from virtually any data
source as long as it doesn’t contain the target keyword. Hence,
we explored adding such negative sets, here-by called as base
real negative data, to improve baseline performance.

• TTS with incremental amounts of real positive data
In this experiment we wish to understand the need of real data
for model training when quality TTS data is available. To
do so, we compare performance of pure TTS trained model,
and gradually increase the real positive data to 100k. We
also test the effect of addition of real base negatives here,
mentioned above, and see how it can offset the need for real
data drastically.

• TTS data and varying amount of speakers in real data
We train models with the baseline of fixed TTS configuration,
while adding real data uniformly per speaker and gradually
increasing speaker count. Uniformly sampling real utterances
from speakers should provide data-diversity to help model
train better and faster ideally.

• TTS data and varying number of utterances per speaker in real
data
Similar to the above experiment, we keep the TTS data as
fixed, but now vary the number of utterances per speaker
while keeping the speaker count as fixed. Instead of increasing
diversity of speakers, we aim to see how many utterances per
speaker helps the model.

6. Experimental Results
6.1. Baseline KWS models with simple mixing options

Table 4 shows the evaluation results of models trained with
different combinations of training data. We show FRR’s at a



Figure 3: FRR over different amounts of real data. Blue bars
indicate the baseline configs, and red bars have additional base
negative data. Medium sized model used here.)

fixed false accept rate (section 5.2). TTS data trained FRR’s
are high (46.47%) compared to real data trained baseline FRR
(3.17%).

However, we observe that adding real negative data (∼11
M) to all sweep experiments improves FRR numbers of all TTS
based models dramatically (the second half of Table 4). Based
on the observation and, we decide to keep using real negative
data as base negative data for all other experiments. We also see
that mixing all TTS and real data gives the best results.

Table 4: Model baselines trained on different datasets

Baseline models per train data FRR
Virtuoso data only 53.10%
AudioLM data only 46.50%
TTS (Virtuoso + AudioLM) 46.47%
Real data only 3.17%
Improved baselines models per train data FRR
Virtuoso + base real negative data 17.75%
AudioLM + base real negative data 16.59%
TTS + base real negative data 17.94%
TTS + Real data 2.46%

6.2. TTS + Incremental amounts of real positive data

In this setup, we train models with all the TTS data and gradually
increasing amounts of real positive data (randomly sampled) as
shown in Fig. 3. The blue bars show the FRR numbers of the
models trained without real negative data, while the red bars
show FRR numbers of models trained with base real negative
data. Blue and Red bars show similar improvements when real
negative data is added as base training data.

In Fig. 3 we see that the model FRR’s improves (decreases)
monotonically, as we add more real positive data to the training
data. From the Fig., we can observe that all the real negative
data improved FRR number from 46.7% down to 17.94% with
TTS only baseline. On top of that adding all the real positive
data to TTS only baseline improved FRR from 17.94% to 2.46%.
We can conclude that both negative and positive real data have
a significant impact to the TTS only baseline model. And we
note that about 100k of real positive data samples with base real
negative data and TTS data gives 9.94% FRR, which is about
∼3 times the FRR of real data only baseline (3.17%).

6.3. TTS + Real data with varying number of speakers

In this setup, we use all the TTS data with the real negative
data as the base training data, and mixes small amounts of real
positive data that has increasing number of speakers. We sample
fixed number (10) of utterances per each speaker. The first half
of Table 5 shows the result, where the FRR numbers improves
as the number of speakers in the real positive data grows. We
observe that models trained with number of speakers 100 or
higher, gives performance with FRR similar to or less than 3
times the FRR of the baseline (3.17%). Note that the baseline
model is trained with 3.8M real positive data, while the TTS+100
speaker model was trained with only 1k real positive utterances.

Table 5: Speaker variation experiments. First we increase
speaker count while fixed utterances per speaker to 10, and
second, we fix the speaker count to 100, and increase utterances
per speaker. All exp uses full TTS data and base negative data.

Speakers with 10 utterances each FRR
TTS + 1 Speaker (10 utts) 15.28%
TTS + 10 Speakers (100 utts) 14.94%
TTS + 100 Speakers (1k utts) 9.78%
TTS + 200 Speakers (2k utts) 9.90%
TTS + 500 Speakers (5k utts) 7.63%
Speaker count fixed at 100 FRR
TTS + 2 utts/speaker (200 utts) 10.99%
TTS + 6 utts/speaker (600 utts) 10.95%
TTS + 12 utts/speaker (1.2k utts) 10.71%
TTS + 20 utts/speaker (2k utts) 9.47%
TTS + 200 utts/speaker (20k utts) 7.99%

6.4. TTS + Real data with varying number of utterances
per speaker

As a complimentary experiment to section 6.3, we keep the
speaker count constant (100) and increase the number of utter-
ances per speaker with the real positive data. Second half of
Table 5, shows that increasing number of utterances improves
FRR relatively slowly given fixed number of speakers. From
this observation, we can conclude that increasing diversity of
speakers as the previous sweep has more impact than increasing
number of utterances with fixed speaker count.

7. Conclusion
We explore and evaluate the benefits of TTS synthesized data
for training keyword spotting models. To maximize diversity of
generated data, we applied prosody controlled text generation,
and used TTS generation conditioned by audio samples. Finally
we evaluated various mixing conditions of real data that ranges
from zero to a scale, where we evaluated the effects of number
of speakers, and number of utterances per speakers. Experiments
showed that we are able to obtain reasonably high accuracy (∼ 3
times FRR of baseline) with a fractional number of real positive
samples (2k) compared to the baseline (3.8M).
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