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Abstract

Automatic Speech Recognition (ASR) model training requires
large amounts of paired data, i.e. audio/text pairs. However,
such paired data is expensive to collect and even harder to anno-
tate as opposed to using unpaired text data. With increasingly
better speech synthesis models, we can now generate natural-
sounding speech and utilize large amounts of unpaired text. In
this paper, we use the Voicebox model for speech synthesis.
Firstly, we assess synthetic speech quality by comparing the
amount of synthetic speech required to obtain the same ASR
performance as real speech. We find that in noisy settings 10
times more synthetic data than real data is required to achieve
equal performance whereas in clean settings, only 7 times more
is needed. Secondly, we explore the improvements in the ASR
performance brought by the acoustic variability and lexical vari-
ability from the unpaired text and synthesized speech. We find
that having both acoustic and lexical variability is better than ei-
ther one individually. Having lexical variability is better on av-
erage than acoustic variability when there are smaller amounts
of unpaired text, however, acoustic variability becomes more
important as the amount of unpaired text increases.

Index Terms: synthetic data, ASR, automatic speech recog-
nition utomatic speech recognition, ASR, unpaired data, text
injection, synthetic data, out-of-domain, unpaired text data

1. Introduction

Automatic Speech Recognition (ASR) models require large
amounts of paired training data (speech/text pairs) especially
when being used in production systems. Such large amounts
are expensive and time-consuming to obtain. However unpaired
text data is commonly available; i.e. text without corresponding
speech. Therefore, it is highly useful to be able to utilize this
unpaired text to train ASR models.

Many previous studies have explored training ASR models
using only unpaired text data. For example, [1] uses synthe-
sized speech for the unpaired text using Text-To-Speech (TTS)
models, [2] trains ASR models on speaker personalized TTS
models, [3] proposes text-injection methodologies, i.e., using
unpaired text to update parts of the model, [4—6] propose using
unpaired text data to train a separate language model which is
then utilized in ASR decoding and scoring modules.

In this paper, we adopt a speech synthesis-based approach.
Instead of using conventional TTS systems, we make use of
a generative speech model, that can perform multiple speech-
related tasks, i.e., the Voicebox model [7] to synthesize speech
from the unpaired text. Voicebox is a state-of-the-art model for
speech synthesis, speech editing, denoising, and other speech
tasks. It is trained using masked input speech where the goal is
to generate the masked portions of the speech with the guidance
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of the surrounding audio and the text transcript.

When using synthetic data, the natural question that arises
is: ‘how good is the speech synthesis for Automatic Speech
Recognition?’. We address this question by training multiple
ASR models with increasing hours of synthetic data and mea-
suring how many hours of synthetic data are needed to match
the performance of real audio/text pairs.

The next important question that we address in this paper
is regarding the source of the unpaired text data that is synthe-
sized. We analyze different sources that the textual data can
originate from. The text data can either come from the same
corpus multiple times or it can come from a different one. First,
if the data comes from the same corpus, the audio/text pairs
used downstream for ASR training would only differ in the au-
dio part, and hence the data only introduces acoustic variability.
Second, if the data comes from a different corpus, the audio/text
pairs used for ASR training would differ both in their lexical and
acoustic properties. The third setting is where the unpaired text
is not synthesized at all, rather the speech representations for
unpaired text are generated by averaging over existing paired
data as opposed to synthesis, following the strategy described
in [3]. This text data comes from a different corpus. In this
case, we only change the text part and hence introduce only
lexical variability in the data.

In this paper, we investigate the following: (1) how much
synthetic data is needed to match the performance of real data
on ASR, and (2) the impact of lexical and acoustic variability in
unpaired text/synthetic audio pairs on the ASR Model perfor-
mance.

We find that for the noisy audio test set, 10 times more syn-
thetic data is required to match the performance of real data; and
for the clean audio data test set 7 times more synthetic data is
required. Secondly, having more acoustic and lexical variability
improves ASR performance than just having acoustic variabil-
ity by a relative 11.2% in the clean setting and by 10.3% in the
noisy setting. Acoustic and lexical variability improves ASR
performance more than just having lexical variability by a rela-
tive 7.9% in the clean setting and by 9.6% in the noisy setting.
Having lexical variability is 3.1% relatively better than having
acoustic variability in the clean setting and 0.6% relatively bet-
ter in the noisy setting, however in higher training data setting,
acoustic variability is more beneficial than having lexical vari-
ability. As expected, the largest gain is achieved when the un-
paired text data is from a new source while adding both lexical
and acoustic variability to the existing paired data.

2. Related Work

Many studies have tackled the problem of using unpaired
text data in training ASR models. For example [1, 8] uses
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Figure 1: Overview of the VoiceBox Model [7]

Tacotron2 [9] TTS model for synthesis and augments with
available paired data. Out of these, [1] explores prosodic varia-
tion in the synthesis speech by using Global Style Token (GST)
to expand prosodic variation, and [8] explores acoustic variation
introduced by the different speakers using the synthetic speech
generation conditioned speaker representations. In our work,
the acoustic diversity is not only conditioned on the speaker
but also on the prosody, speech rate, and other acoustic vari-
ables. Secondly, in [8] there is no idea of how much augment-
ing acoustically diverse data relates to the training data scaling,
while we are able to relate the two. In [8], lexical variation is
investigated by adding new utterances sampled from a language
model, which are then synthesized which not only introduces
lexical but also acoustic variability, whereas we carefully only
investigate lexical variability by using the text-only injection
method described in [3]. In addition, compared to the studies,
we use one of the latest speech generative models (Voicebox) to
synthesize speech and compare its performance to real speech.
Other studies use unpaired text to update the model pa-
rameters instead of synthesizing speech. For example, text-
injection [3, 10] use averaged audio representations, from the
available audio samples, paired with the unpaired text to train
the model. In [11-13], the authors use the unpaired text data
to pre-train the decoder part of a transformer-based encoder-
decoder model, treating it as a language model. Other works
like [4,5, 14] train a separate language model with the unpaired
text data, which is then used for scoring the outputs of the de-
coder of the ASR model. MAESTRO [15] uses paired data to
learn the embedding space for the audio and text modalities, fol-
lowed by a shared embedding space. The unpaired modalities,
audio and text separately are then used to update their respec-
tive modalities. These studies have shown that making use of
unpaired text data helps reduce the WER of an ASR model.

3. Models
3.1. VoiceBox

In this work, for the unpaired text we generate the speech us-
ing the VoiceBox model [7]. This model consists of an audio
model and a duration model, both of these models are trained
using Conditional Flow Matching [16]. It is a non-auto regres-
sive generative model, capable of performing speech editing,
denoising, style transfer, and diverse sampling. We denote this
model as V.

Name Paired Data | Unpaired Text | Voicebox | Source of

‘ (hr) (hr) ‘ Unpaired Data
Baseline 10-100 0 - -
S 0 100-1000 Yes Librispeech
A 100 960-2860 Yes Librispeech
L 100 960-2860 No Libri-Text
L+ A 100 960-2860 Yes Libri-Text

Table 1: Different experimental settings used in our work.

3.2. RNN-T ASR Model

For the ASR models, we use the RNN-T model architecture.
We denote this model as M. All implementations used an
in-house extension of the PyTorch-based [17] fairseq toolkit.
We used 80-dimensional log Mel filterbank features that are
first projected to 128, then spliced and stacked to 512 dimen-
sions, reducing the sequence length by 4x. The encoder con-
sists of Emformer blocks with 4 attention heads and a 1024-
dimensional feed-forward layer. The decoder network contains
one 256-dimensional LSTM layers with layernorm and dropout.
Both the encoder and decoder outputs are projected to 768 di-
mensions before passing to an additive joiner, which contains a
linear layer with 4097 output BPE units. We use the Adam opti-
mizer, and tri-stage learning rate scheduler, with a peak learning
rate of 5 x 10°. The model is fine-tuned for 20 epochs and the
final model is used for evaluation.

4. Experimental Setup
4.1. Dataset

We use Librispeech [18] which contains both speech and its
transcripts. The training subset contains 960 hours of speech,
from multiple different speakers, a collection of books read by
non-professional speakers. The training, dev, and test subsets in
the corpus are divided into portions, namely ‘other’ and ‘clean’
based on whether the audios are noisy or clean. The test subset
consists of a total of 10.5 hours of data, similarly divided into
‘other’ and ‘clean’ subsets.

We utilize the LM corpus provided in LibriSpeech [19]
[Libri-Text] which contains 800M tokens and has a vocabulary
size of 200k from 14.5k public books from Project Gutenberg.
This corpus only contains text, with no associated speech.

For the baseline ASR M and Voicebox V model training,
we use the in-house video ASR data which consists of 14K-hour
manually transcribed social media videos. This is a collection
of public and de-identified English videos and contains a diverse
range of speakers, accents, topics, and acoustic conditions.

4.2. Experimental Settings

The Voicebox model V is pre-trained on the in-house video
ASR dataset which consists of public social media audio/text
pairs. Similarly, M is also pre-trained on the video ASR dataset
and later finetuned on Librispeech or Libri-Text based on the ex-
periment. Since the data for pre-training and testing, video data
vs. Librispeech or LibriText, are very different, this is consid-
ered an out-of-domain setting. Table 1 summarizes the different
experimental settings.

Real Data Baseline: We finetune the ASR model M on 10,
50, and 100 hours of randomly selected real data pairs from
Librispeech train corpus. Each additional data selected contains
the previous subset as part of it.

Synthetic Data: We finetune M on K hours of synthetic data,
where K ranges from 100 to 1000 hours. In each experiment,



the model is started from the seed model and fine-tuned on the
data. This experiment is labeled as S.

Acoustic Variability: To incorporate only acoustic variability
into the ASR Model, the additional unpaired text data, used for
speech synthesis, is selected from the same data that the model
M has already seen; i.e. Librispeech train. Since no new lex-
ical variability is being included, the model only sees acoustic
variability in the training data. This experiment is labeled as A.
Lexical Variability: We use the J-AT model [3] for this exper-
iment. The model has the same architecture as M. The model
estimates average audio embeddings from the paired audio/text
in the training data. It pairs these averaged audio embeddings
with the unpaired text and trains the ASR model. The unpaired
text comes from a new corpus, i.e. Libri-Text. We use this strat-
egy to introduce only lexical variability into the data, since no
audio data is being used, there is no acoustic variability. This
experiment is labeled as L.

Lexical and Acoustic Variability: To incorporate both acous-
tic and lexical variability in the ASR model, the additional un-
paired text data, used for speech synthesis, is selected from a
new corpus; such that the model M has not seen that data be-
fore. Since this text data includes previously unseen words, lex-
ical variability is increased, and in turn acoustic variability in-
creases. This experiment is labeled as L + A. Note that V' can
generate varying speech for the same text, where the prosody,
speaker’s gender, speaking style, or speaking rate may vary. For
our purposes, we change the random seed of the model V to in-
troduce variability in speech given the same text, since we do
not have explicit control over these variables.

5. Results and Observations
5.1. Synthetic Speech vs Real Speech

Figure 2 shows the WER decrease when more data is subse-
quently added to the ASR training. For the test-other subset
in Librispeech, it can be observed that with 100 hours of syn-
thetic data, we can beat the performance of 10 hours of real
data. To reach the performance of 50 hours of real data, we
need about 500 hours of synthetic data and for 100 hours of real
data, 1K hours of synthetic data is needed. Therefore about 10
times more synthetic data than real data is needed to achieve
similar ASR performance. Similarly, for the cleaner audios in
test-clean, about 7 times more synthetic data than real data is
required to achieve similar ASR performance.

If we assume the presence of little paired data, i.e. 100
hours, then by using an additional 960 hours of synthetic data,
we can beat the performance of 100 hours of real data on test-
other (this can be seen in the next section). This is encouraging
to see that with little paired data, we can improve the perfor-
mance by using additional synthetic data. This reduces the real
paired data required and therefore makes the ASR fine-tuning
for a new domain a relatively cheaper process. For the topline
experiment, using all 960 hours of Librispeech-train, we can
achieve WER of 11.03 and 4.78 on test-other and test-clean re-
spectively.

Please note that the Librispeech test data is out of domain
for the initial ASR model, and this model is fine-tuned only for
a small number of iterations. Hence, the WER reported here is
much higher than the SOTA numbers which are obtained from
a more common setting which involves training only on Lib-
rispeech [20, 21]. We try the above experiment multiple times
with randomly sampling the hours of data under each experi-
ment and our observations remain consistent.
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Figure 2: WER comparison when different hours of synthetic data is
included into training. The horizontal lines indicate the WER when
only 10, 50 and 100 hours of real data is used in training. Left chart and
right chart show the results on test-other and test-clean respectively.

5.2. Lexical vs Acoustic variability in Synthetic Speech

In the following experiments, we use 100 hours of paired data
from Librispeech train. In the first experiment, the remaining
860 hours of Librispeech train are synthesized and added into
training. In successive experiments, additional unpaired text is
selected and used for speech synthesis (100 hours of audio).
This is then included in the training data. We control the lexical
and acoustic variability incorporated in the training data by con-
trolling for the source of the additional text/synthesized speech
pairs.

To add only acoustic variability (experiment denoted
as ‘A’), we select an additional 100 hours of data from
Librispeech-train. This selected data is already present in the
training data in its synthesized form; another version of this
synthesis is added to the training data. The Voicebox model
introduces variability in the speaker’s gender, speaking style,
speech rate, and therefore having two synthetic versions of the
text, we introduce only acoustic variability into the data.

To add only lexical variability and no acoustic (experiment
denoted as ‘L”), the additional 100 hours of data is selected from
Libri-Text. We use the J-AT [3] strategy as explained before
where the unpaired text is paired with averaged audio embed-
dings and used for model training. Since only new text is in-
cluded and no audio is used, only lexical variability is incorpo-
rated into the model.

To add both acoustic and lexical variability (experiment de-
noted as ‘L + A’), similarly as above, additional 100 hours of
data is selected from Libri-Text. This selected data is synthe-
sized and included in the training. Since the text and synthe-
sized speech are new each time, both acoustic and lexical vari-
ability are introduced in the data. Figure 3 compares the three
different settings.

Firstly, it can be observed that with both lexical and acous-
tic variability L + A, the performance is better in both test-other
and test-clean, as compared to when only acoustic, A, or lexical
variability, L, is present individually. Furthermore, when more
synthetic data is included in training, the performance consis-
tently improves for the L + A setting, slightly in the case of
only A and worsens in the case of lexical variability L. And
although, having lexical variability is better in both test-other
and test-clean, with the increment in training data in the low-
resource data settings, having more acoustic variability turns
out to be better than only lexical variability (that is owing to the
worsening performance of only lexical variability experiment).

Finally, it can be observed that it is better to use the Voice-
box model to synthesize speech (L) than to use the unpaired
text as-is (exp A). On average, using Voicebox leads to a 9.6%
relative WER improvement in test-other and a 8.0% relative
improvement in test-clean. At best, in the high-resource data
experiments, the synthetic data setting leads to more improve-
ment, namely 19.4% in test-other and 19.8% in test-clean.
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Figure 3: WER comparison when synthetic data is added into train-
ing. The L + A shows when both linguistic and acoustic variability is
added. The A and L. show when only acoustic and linguistic variability
is present respectively. The top and bottom charts show the results of
test-other and test-clean respectively. The three horizontal lines show
the performance of the model trained on 10, 50, and 100 hours of real
data respectively.
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Figure 4: Training vocab size and the WER on test other in two exper-
iments, i.e. L.+ A and A, as a function of training hours of synthetic
data used in ASR.

5.3. Analysis

To analyze the impact of the lexical variability of synthesized
speech on WER, we compare how WER decreases with the in-
crease in vocabulary size of the training data. Figure 4 shows
the training vocabulary size and the WER on test-other subset
in two experiments, i.e. L.+ A and A. We can observe that
there is a negative correlation between the training vocab size
and the WER; i.e. as the training vocab size increases the WER
decreases. For test-other and test-clean, the Pearson correlation
between WER and training vocab size is —0.8, and —0.9 re-
spectively. This observation is similar to that reported in [22],
where new topic words were introduced in the training vocabu-
lary and an improvement in WER was observed.

To evaluate the acoustic variability, one of the metrics that
can be analyzed is the silence, graphemes, and word durations
of the training data. Figure 5 shows the box plot of silence du-
rations in the synthesized speech used in experiments L + A,
L, and the real speech (these silences do not include the begin-
ning and end silences). We observe that the silence duration
in the L + A experiment is higher on average than the ones
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Figure 5: Box plot comparing distribution of silences and graphemes in
the two synthesized datasets and the real data.

in A experiment and the real data. This is also observed for
the grapheme durations. It has been reported previously that
slower speech rates actually lead to better ASR performance
[23], which is what we observe in these experiments as well.

Similarly, we analyze the word durations for the experi-
ments. Figure 6 shows the qg-plot for the average word du-
ration for data used in the experiment L. + A compared with A,
data used in A compared with the real data, and the data used
in experiment L. + A compared with real data. It can be ob-
served that the data used in experiment L. + A, has durations
most similar to the ones of the real data (lies closer to the 45-
degree line). This also explains why experiment L. + A has bet-
ter performance than experiment A, and this could be explained
by the increasing lexical and acoustic variability from the text
coming from a new corpus.
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Figure 6: gg-plot for the average word duration for two sets of synthe-
sized data with compared with each other and the real data. Left-to-
right: L+ A vs. A, L 4+ A vs. real, A vs. real.

6. Conclusion

In this paper, we use Voicebox to synthesize speech from un-
paired text and use the resulting synthetic speech to train ASR
models. We establish benchmarks for the Voicebox-based syn-
thesized speech. We find that 10 times and 7 times more syn-
thetic speech than real speech/text paired data is required in
noisy and clean settings, respectively, to get matching perfor-
mance. Secondly, we explore the benefits from using lexi-
cally and acoustically diverse synthetic speech as augmentation
in training data. We find that having both lexical and acous-
tic variability is better than just acoustic variability and lexi-
cal individually. Furthermore, we find that in the case when
lower unpaired text data is available, having more lexical vari-
ability is better than only acoustic variability, however as more
unpaired text becomes available (training data size increases),
having more acoustic variability is better. Overall, generated
speech from Voicebox models, using various seeds, leads to di-
verse speech samples with acoustic and prosodic variability in
the speech. Therefore we believe that our conclusions based
on the Voicebox synthesized speech are generalizable to other
methods like speech perturbation. For future work, we aim to
extend the comparison to other TTS and speech generative mod-
els, like AudioBox [24].
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