
Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low
Resource Environments

Pai Zhu1, Dhruuv Agarwal1, Jacob W. Bartel1, Kurt Partridge1, Hyun Jin Park1, Quan Wang1

1Google LLC, Mountain View, CA, U.S.A
{paizhu,dhruuv,bartel,kep,hjpark,quanw}@google.com

Abstract
One of the challenges in developing a high quality custom

keyword spotting (KWS) model is the lengthy and expensive
process of collecting training data covering a wide range of lan-
guages, phrases and speaking styles. We introduce Synth4Kws
– a framework to leverage Text to Speech (TTS) synthesized
data for custom KWS in different resource settings. With no
real data, we found increasing TTS phrase diversity and utter-
ance sampling monotonically improves model performance, as
evaluated by EER and AUC metrics over 11k utterances of the
speech command dataset. In low resource settings, with 50k
real utterances as a baseline, we found using optimal amounts
of TTS data can improve EER by 30.1% and AUC by 46.7%.
Furthermore, we mix TTS data with varying amounts of real data
and interpolate the real data needed to achieve various quality
targets. Our experiments are based on English and single word
utterances but the findings generalize to i18n languages and other
keyword types.
Index Terms: synthetic speech, keyword spotting, custom key-
word, limited data, streamable model

1. Introduction
With the growing demand for voice control and personal devices
from a variety of products such as health rings, smart watches,
voice control earbuds, and smart phones etc., a high performance
keyword spotting model, with low power consumption and mem-
ory footprint becomes increasingly important. Traditionally,
keyword spotting (KWS) has focused on predefined keywords
such as "Siri", "Hey Google", etc. [1–3]. However, the surge of
personalization and customization in these smart devices has fu-
eled the need for a custom keyword spotting solution that allows
users to choose their preferred keyword to trigger a device or
software. It is also an integral part of a seamless user experience
when interacting with AI agents.

High accuracy ASR systems [4] are commonly used for key-
word detection but their energy demand and memory footprint
make them less suitable for continuous usage on devices such as
phones. Recent studies have employed speech classification mod-
els to generate speech embeddings from their encoder hidden
layers. Embeddings of different utterances are then compared
using cosine similarity to determine the degree of match. As an
example, Lin et al. [5] used a five-layer convolution network as
a shared encoder, and trained 125 independent decoders, each
classifying over 40 different keywords. The final output of the
shared encoder is used as utterance embedding. While this paper
also explores the usefulness of TTS data on speech fields, their
experiments and evaluations are optimized for utterance clas-
sification. Rybakov et al. [6] further explored different model
architectures such as DNN, CNN, SVDF [2], CRNN, multi head

self attention (MHSA), MHSA-RNNs, etc., and greatly improved
classification accuracy.

Such classification models are trained to correctly classify
the specific keyword in an utterance, but their utterance embed-
dings fail to distinguish different phrases, as they are not trained
to maximize the embedding distance between utterances with
different phrases, and vice versa. To directly optimize embed-
ding distances and improve keyword matching quality, other
research [7, 8] has adapted triplet loss from its original appli-
cation in FaceNet [9]. In a batch of examples, they sample an
anchor utterance, and then sample a positive utterance that has
the same phrase as the anchor utterance, and a negative utter-
ance with a different phrase. The loss function is optimized to
minimize the embedding distance of the positive utterance pair,
and maximize the embedding distance of the negative pair. They
used a GRU two-layer model and achieved reasonable accuracy
on the WSJ dataset [10].

In contrast to detecting a pre-defined keyword, in which
utterances contain a small set of specific keywords, it is very
expensive to collect utterances for a wide range of phrases and
have a good distribution of different locales, speaker demograph-
ics, speaking styles, and prosodies. However, with the recent
advancement of Text-to-Speech(TTS) technologies including
MAESTRO [11], and Virtuoso [12], speech utterances can be
generated with over a distribution of the above speech character-
istics for more than 100 languages [13]. Notably, TTS has been
used in a range of applications such as automatic dubbing [14]
and voice conversion [15], and proven to be a great data augmen-
tation source in low resource environments. Studies have shown
that TTS can be leveraged to augment the training data of other
speech models, such as speech recognition [16] and speaker
recognition [17]. Researches [18, 19] have also applied TTS to
keyword spotting tasks. However those work have focused on
using TTS data to improve model quality for different product
types, rather than comprehensively evaluate the synthetic data
to real data ratio and its quality impact in different resource
settings.

In this paper, we show how applying different levels of TTS
data improve custom keyword spotting quality. Our experiments
and analysis address three practical scenarios:

• No available real data. We aim to understand how different
amounts and diversity of TTS data can improve model quality.

• Low/limited real data. Similarly, we aim to understand how
additional TTS data helps model quality when training with
limited real data.

• Need planning for real data. We aim to understand the
quantity of real data need to be collected, on top of sufficient
TTS data, to achieve various quality targets.

Our paper is organized as follows. Section 2 introduces the



Figure 1: An overview of the Synth4Kws framework: (a) TTS data sampling process; (b) Experiment setup in no-resource and low
resource environments with varying phrase diversity and utterance sampling; (c) Evaluation process and metric computation.

the model architectures, an optimized triplet loss batch sampling
method used in our experiments, and our TTS model choice with
utterance sampling. In Section 3, we discuss more details about
training resources and the TTS experiment setup. We also create
a reliable evaluation process and metric definitions to rank model
performances. In Section 4, we report and analyze our results on
the above three scenarios and give our recommendations. Finally,
we conclude the paper in Section 5.

2. Methods

2.1. Model Architecture

Long Short Term Memory (LSTM) [20] is a commonly used
RNN network that captures long and short term dependencies
using memory gates. In this paper we used a standard three
LSTM layer model, with hidden layer dimension 384 and output
layer dimension 128. This results in a 2.8Mb model (247Kb
quantized) that can be continuously run on-device wth reasonable
power consumption. We have tried other LSTM model sizes and
different architectures including Conformer [21]. We choose the
247Kb quantized LSTM model for our TTS experiments based
on its good accuracy and low memory footprint, which can fit
most device types.

2.2. Optimized Triplet Loss

Our triplet loss is optimized based on the traditional method
used in Sacchi et al. [7]. Instead of sampling one positive utter-
ance pair and one negative utterance pair per batch, we use the
generalized-end-to-end approach [22] to construct a batch with
X phrases and Y sampled utterances per phrase. For each phrase,
we used half the sampled utterances as enrollment utterances
and the other half as test utterances. Each test utterance em-
bedding is compared to the centroid of the enrollment utterance
embeddings. This reduces the variance of enrollment utterance
samples and improves training convergence stability. Thus, one
batch contains X ∗Y/2 positive examples and X(X − 1) ∗Y/2
negative examples. Since this results in a polarized training
distribution with a majority of negative examples and posteriors
that can be adversely affected by a skewed training prior, we
downweight the negative examples by a factor γ. In addition,
we calculate the loss from all sampled examples using matrix
operations to significantly speed up training.

2.3. TTS utterance sampling

Virtuoso [12] is used for TTS data generation for its naturalness
and generalization to unseen transcripts and languages. It is built
on the foundation of MAESTRO [11] and leverages different
training schemes that combine supervised and unsupervised data
(e.g. untranscribed speech and unspoken text data).

As shown in Fig. 1(a), we use the same phrase list containing
38k unique words from MSWC [23]. For each word, utterances
are generated by sampling from 726 speakers and five different
prosodies. Virtuoso supports more than 139 locales [13]. Our
experiments focus on English but this approach could benefit
other locales even more, especially less common languages with
a limited availability of real data.

3. Data and Experiment Setup
3.1. Training Resources and Setup

Our real utterances are sampled from the MSWC [23] open
source dataset. We process the raw audio into 40 spectral energy
features for each 25ms frame. We construct the training batch by
randomly choosing eight phrases, and sample 10 utterances per
phrase. For each phrase, we use five utterances to build the en-
rollment centroid. The remaining utterances are used for testing
by computing cosine similarity against the enrollment centroids.
For training framework, we use Tensorflow/Lingvo [24] for its
advantages of automatic streaming inference conversion.

3.2. TTS Experiment Set Up

As mentioned in Section 1, we explore three practical scenarios
to analyze TTS’s impact on model training and quality. Specifi-
cally:
• No real data available. As shown in the top part of Fig. 1(b),

we conduct model training with TTS data alone. To under-
stand the how phrase diversity affects model quality, we tested
500, 1k, 10k and 38k unique phrases respectively with 100
samples per phrase. We also investigate the impact of the
number of samples per phrase. With the full phrase diversity,
we tested our model with 10, 25, 50, 75, and 100 samples per
phrase.

• Limited real data available. As shown in the bottom part of
Fig. 1(b), we start with around 50k real utterances, randomly
sampled from MSWC, to build a baseline model for bench-
mark purposes. Our TTS phrases and utterances sampling



methods are the same as the above but sampled utterances are
mixed with real data in training. All models are trained from
scratch, with different data mixtures.

• Relationship between quality and real data. As using TTS
data only may be inadequate to reach some quality targets,
we investigate how much real data is needed. We start with a
baseline of 38k unique phrases and 100 samples per phrase
of TTS data alone, and incrementally increase the real data
amount and analyze the results. We interpolate the model
quality vs. real utterance count curves to infer the amount of
real data needed for desired quality.

3.3. Eval Dataset and Process

Reliable keyword matching evaluation and metrics are important
for understanding the effectiveness of TTS data. We use the test
split of the commonly used Speech Command Dataset [25] for
evaluation. This dataset contains more than 11k utterances from
35 unique phrases. For each phrase, illustrated in Fig. 1(c), we
randomly choose 10 utterances as an enrollment set and use the
rest for testing. The enrollment and test utterances are treated
as a match (positive) if their similarity is above a threshold,
and treated as a mismatch (negative) otherwise. By comparing
the model prediction and utterances true label (determined by
transcripts), we can compute different metrics to rank the models.

3.4. Eval Metrics

The left part of Fig. 2 shows the cosine similarity histogram
of the 247Kb LSTM model’s evaluation result for the phrase
“up”. A perfect model would have a vertical line (threshold) to
separate the true positive (red) and true negative (blue) examples.
The overlapping parts are the errors, which, depending on the
threshold, can be divided into False Accepts (FA) and False
Rejects (FR). When sliding the threshold from 0 to 1 with a
stride of 0.01, we plot the False Accept Rates (FARs) and False
Reject Rates (FRRs) corresponding to each threshold in the DET
curve on the right in Fig. 2. We use the area under the DET
curve (AUC) under the full FAR/FRR range to measure model
performance independently of threshold. To measure model
performance independently of enrollment phrases, we average
the AUC across phrases. Lower values are better, and this is the
default metric used in the rest of the paper to rank models and
checkpoints.

Figure 2: Left: Score histogram for an 247Kb LSTM model.
Right: DET curve. The range of FAR/FRR is truncated for better
visualization.

Amount of
unique phrases

Sampled utterance
per phrase EER (%) AUC (%)

500 100 34.42 28.90
1k 100 30.17 24.20
10k 100 15.09 7.68
38k 100 12.62 5.93
38k 10 16.88 9.32
38k 25 15.67 8.34
38k 50 14.59 7.22
38k 75 13.78 6.99
38k 100 12.62 5.93

Table 1: No real data scenario. Model improvements by applying
varying amounts of TTS phrases (Top 4 rows) and utterance
samplings per phrase (Bottom 5 rows). Performance is measured
by Equal Error Rate(EER) and Area under DET curve (AUC).

4. Experiment Results

Section. 3.2 explained three scenarios for exploring TTS data
impact on improving custom KWS models. This section will
show the experiment results and analyses.

4.1. TTS Model Experiments with No Real Data

We analyze the model improvements from TTS data by varying
the amount of unique TTS phrases and varying amount of utter-
ance samples per phrase. Table. 1 top rows shows that when the
number of unique phrases increases from 500 to all phrases: 38k
(with 100 samples per phrase), the Equal Error Rates (EERs) and
AUCs improve monotonically. The DET curves with triangles
in Fig. 3 show that the improvement is consistent over different
operating points. When fixing the phrase diversity at 38k and
gradually increasing sampled utterance from 10 to 100, as shown
in bottom rows in Table. 1 and the dotted DET curves in Fig. 3,
model quality improves monotonically. In the environment with-
out any real data, both TTS phrase diversity and sample sizes
contribute proportionally to model performance.

Figure 3: The “No real data” scenario. DET curves for models
trained with varying phrase diversity and varying utterance
samplings per phrase.



Amount of
unique phrases

Number of utterances
per phrase EER (%) AUC (%)

0 100 11.73 5.15
500 100 10.17 4.09
1k 100 9.22 3.17
10k 100 9.13 3.07
38k 100 8.7 2.94
38k 0 11.73 5.15
38k 10 8.68 2.92
38k 25 8.48 2.85
38k 50 8.19 2.64
38k 75 8.88 2.91
38k 100 8.7 2.94

Table 2: “Low real data scenario” with 50k real utterances as
baseline. Model quality changes as a function of the number
of TTS phrases (top 5 rows) and the number of utterances per
phrase (bottom 6 rows). Performance is measured by Equal
Error Rate (EER) and Area under DET curve (AUC).

4.2. TTS Model Experiments with Low Real Data

In the scenario in which some real utterances are available but
not in sufficient numbers for training, we explore the impact of
TTS data by varying the number of unique phrases and utterance
samples per phrase. In this experiment we use a model trained
with 50k real utterances as a benchmark baseline. Shown in Ta-
ble. 2 and the DET curves with triangles in Fig 4, as the number
of unique TTS phrases increase, the EER improves from 11.73%
to 8.7% (25.8% rel.) for a model trained with 38k different
phrases, and AUC improves from 5.15% to 2.94% (42.9% rel.).
Moreover, with a fixed amount of 38k unique phrases, as the
amount of utterance samples per phrase varies, the following
trend occurs: the model continuously improves as the number of
samples increases at the beginning. However, as shown in the
bottom half of Table 2, and in the dotted curves in Fig. 4, the
improvement peaks when the number of utterances per phrase
reaches 50 and declines after adding more examples. One expla-
nation for this effect is that extra TTS data might overshadow the
real data contribution so the model gets less information from
real utterances. In the best case, when the model is trained with
38k phrases and 50 utterances per phrase, the model get further
improved to 8.19% EER (30.1% rel. improvement) and AUC
2.64 (48.7% rel. improvement).

Figure 4: The “Low real data scenario” with 50k utterances.
DET curves for models trained with varying phrase diversity and
varying utterance samplings per phrase.

4.3. TTS Model Experiments with Varying Real Data

Figure 5: EER and AUC trends with increasing real utterances
for model training. The TTS data with 38k phrases and 100
utterances per phrase are used in all experiments.

We explored the impact of TTS data for model improve-
ments in two scenarios: “no real data” and “low real data”.
Collecting real data is an expensive process but still necessary
when the model is required to perform at high quality. To help
resource planning and inform product decisions, we start with a
model baseline that uses only TTS data (with 38k unique phrases
and 100 utterances per phrase), and record the EER and AUC
metrics when increasing the amount of the real training utter-
ances to 0, 50k, 150k, 250k, 500k, 1M, 3M, and 5M. We plot the
EER and AUC trends in Fig. 5. It is easy to see that the amount
of the real utterances is positively correlated model performance.
To find amount of real utterances needed to achieve a quality
target, we interpolate the data points in Fig. 5. For example, to
achieve 5% or lower EER, the interpolation shows about 700k
real utterances need to be collected. Similarly, to achieve 2%
or lower AUC, we can see about 200k real utterances should be
collected.

5. Conclusion
In this paper, we propose Synth4Kws — a framework to lever-
age synthetic speech data for developing customizable keyword
spotting models. With this framework, we carried out a system-
atic study on the impact of TTS data on user-defined keyword
spotting tasks in various resource environments. In “no real
data” experiments, we found that model quality monotonically
improves when increasing TTS phrase diversity or utterances per
phrase. In “low real data” experiments, with a baseline model
with 50k real data, selecting the right amount of TTS phrases
and utterance samples can improve EER by 30.1% and AUC by
48.7%. We also noticed that extra TTS data could overshadow
the real data and produce worse results. Lastly, we interpolate
the curve composed of model quality v.s. real data quantity
and infer the amount of real data needed on top of TTS data
to achieve different quality targets, which could be informative
for resource planning. Finally although our experiment train-
ing and evaluations are based on the English language and one
word utterances, we believe the results will generalize to other
languages and multi-word keyword spotting tasks.



6. References
[1] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword

spotting using deep neural networks,” in 2014 IEEE international
conference on acoustics, speech and signal processing (ICASSP).
IEEE, 2014, pp. 4087–4091.

[2] R. Alvarez and H.-J. Park, “End-to-end streaming keyword spot-
ting,” in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019,
pp. 6336–6340.

[3] P. Zhu, H. J. Park, A. Park, A. S. Scarpati, and I. L. Moreno, “Lo-
cale encoding for scalable multilingual keyword spotting models,”
in ICASSP 2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp.
1–5.

[4] R. Prabhavalkar, Z. Meng, W. Wang, A. Stooke, X. Cai, Y. He,
A. Narayanan, D. Hwang, T. N. Sainath, and P. J. Moreno, “Ex-
treme encoder output frame rate reduction: Improving compu-
tational latencies of large end-to-end models,” arXiv preprint
arXiv:2402.17184, 2024.

[5] J. Lin, K. Kilgour, D. Roblek, and M. Sharifi, “Training keyword
spotters with limited and synthesized speech data,” in ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 7474–7478.

[6] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and
S. Laurenzo, “Streaming keyword spotting on mobile devices,”
arXiv preprint arXiv:2005.06720, 2020.

[7] N. Sacchi, A. Nanchen, M. Jaggi, and M. Cernak, “Open-
vocabulary keyword spotting with audio and text embeddings,”
in INTERSPEECH 2019-IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2019.

[8] R. Chidhambararajan, A. Rangapur, S. Sibi Chakkaravarthy, A. K.
Cherukuri, M. V. Cruz, and S. S. Ilango, “Efficientword-net: An
open source hotword detection engine based on few-shot learning,”
Journal of Information & Knowledge Management, vol. 21, no. 04,
p. 2250059, 2022.

[9] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2015, pp. 815–823.

[10] D. B. Paul and J. Baker, “The design for the wall street journal-
based csr corpus,” in Speech and Natural Language: Proceedings
of a Workshop Held at Harriman, New York, February 23-26, 1992,
1992.

[11] Z. Chen, Y. Zhang, A. Rosenberg, B. Ramabhadran, P. Moreno,
A. Bapna, and H. Zen, “Maestro: Matched speech text
representations through modality matching,” arXiv preprint
arXiv:2204.03409, 2022.

[12] T. Saeki, H. Zen, Z. Chen, N. Morioka, G. Wang, Y. Zhang,
A. Bapna, A. Rosenberg, and B. Ramabhadran, “Virtuoso: Massive
multilingual speech-text joint semi-supervised learning for text-to-
speech,” in ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023,
pp. 1–5.

[13] T. Saeki, G. Wang, N. Morioka, I. Elias, K. Kastner, A. Rosenberg,
B. Ramabhadran, H. Zen, F. Beaufays, and H. Shemtov, “Ex-
tending multilingual speech synthesis to 100+ languages without
transcribed data,” arXiv preprint arXiv:2402.18932, 2024.

[14] J. Effendi, Y. Virkar, R. Barra-Chicote, and M. Federico, “Duration
modeling of neural tts for automatic dubbing,” in ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 8037–8041.

[15] M. Zhang, Y. Zhou, L. Zhao, and H. Li, “Transfer learning from
speech synthesis to voice conversion with non-parallel training
data,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 1290–1302, 2021.

[16] G. Wang, A. Rosenberg, Z. Chen, Y. Zhang, B. Ramabhadran,
Y. Wu, and P. Moreno, “Improving speech recognition using con-
sistent predictions on synthesized speech,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 7029–7033.

[17] Y. Huang, Y. Chen, J. Pelecanos, and Q. Wang, “Synth2aug: Cross-
domain speaker recognition with tts synthesized speech,” in 2021
IEEE Spoken Language Technology Workshop (SLT). IEEE, 2021,
pp. 316–322.

[18] S. Liu, A. Zhang, K. Huang, and L. Xie, “Leveraging synthetic
speech for cif-based customized keyword spotting,” in National
Conference on Man-Machine Speech Communication. Springer,
2023, pp. 354–365.

[19] J. Lim and Y. Baek, “User-defined keyword spotting utilizing
speech synthesis for low-resource wearable devices,” in 2022 IEEE
International Conference on Consumer Electronics (ICCE). IEEE,
2022, pp. 01–02.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” arXiv preprint
arXiv:2005.08100, 2020.

[22] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized end-
to-end loss for speaker verification,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018, pp. 4879–4883.

[23] M. Mazumder, S. Chitlangia, C. Banbury, Y. Kang, J. M. Ciro,
K. Achorn, D. Galvez, M. Sabini, P. Mattson, D. Kanter et al.,
“Multilingual spoken words corpus,” in Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[24] J. Shen et al., “Lingvo: a modular and scalable framework for
sequence-to-sequence modeling,” ArXiv, vol. abs/1902.08295,
2019.

[25] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” arXiv preprint arXiv:1804.03209, 2018.


	 Introduction
	 Methods
	 Model Architecture
	 Optimized Triplet Loss
	 TTS utterance sampling

	 Data and Experiment Setup
	 Training Resources and Setup
	 TTS Experiment Set Up
	 Eval Dataset and Process
	 Eval Metrics

	 Experiment Results 
	 TTS Model Experiments with No Real Data
	 TTS Model Experiments with Low Real Data
	 TTS Model Experiments with Varying Real Data

	 Conclusion
	 References

