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Abstract
In this work, we present SynesLM, an unified model which can
perform three multimodal language understanding tasks: audio-
visual automatic speech recognition(AV-ASR) and visual-aided
speech/machine translation(VST/VMT). Unlike previous re-
search that focused on lip motion as visual cues for speech sig-
nals, our work explores more general visual information within
entire frames, such as objects and actions. Additionally, we
use synthetic image data to enhance the correlation between
image and speech data. We benchmark SynesLM against the
How2 dataset, demonstrating performance on par with state-of-
the-art (SOTA) models dedicated to AV-ASR while maintaining
our multitasking framework. Remarkably, for zero-shot AV-
ASR, SynesLM achieved SOTA performance by lowering the
Word Error Rate (WER) from 43.4% to 39.4% on the VisSpeech
Dataset. Furthermore, our results in VST and VMT outperform
the previous results, improving the BLEU score to 43.5 from
37.2 for VST, and to 54.8 from 54.4 for VMT.
Index Terms: Audio-Visual Automatic Speech Recognition,
Speech Translation, Multimodal Language Model, Multitask

1. Introduction
Synesthesia is a neurological condition where stimulation of
one sensory pathway involuntarily triggers experiences in an-
other, such as perceiving colors when hearing sounds. This phe-
nomenon highlights the complex integration of multisensory in-
puts in human cognition, essential for comprehending the world
through combined audio and visual stimuli [1, 2]. Visual cues,
for instance, enhance speech recognition and language under-
standing, aiding in translation tasks.

Motivated by these insights, we aim to design a unified
model for a range of audio-visual tasks that concurrently use au-
dio and visual inputs. Similar to human learning processes, our
model benefits from multitask training. Additionally, we found
that incorporating pretrained language model weights further
improves our model’s performance. Recently, there are sev-
eral works trying to incorporate visual information with speech
to perform automatic speech recognition (ASR). For instance,
AV-HuBERT [3] focuses on audio-visual speech representation,
utilizing video lip recordings to learn powerful speech represen-
tations. AVATAR [4] extends this concept by incorporating full
visual frames for unconstrained audio-visual automatic speech
recognition (AV-ASR). The AVFormer [5] explores injecting vi-
sion into frozen speech models for zero-shot AV-ASR, high-
lighting the potential of lightweight domain adaptation. How-
ever, existing research primarily focuses on AV-ASR, with a no-
ticeable shortage of studies investigating a unified approach for
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Figure 1: An overview of SynesLM architecture. The definition
of the special tokens will be discussed at the end of the Section 3.

all audio-visual language understanding tasks, such as visual-
aided speech translation.

On the other hand, large language models(LLMs) have
surged in popularity due to their advanced capabilities in natu-
ral language understanding and generation. Several multimodal
language models have been developed for more complex tasks
necessitating either visual or audio modalities. LLaVa [6] and
BLIP2 [7] corporate visual modality for visual question answer-
ing and image captioning. VoxtLM [8] and VioLA [9] uti-
lize speech modality to perform multiple speech tasks, such as
speech recognition and text-to-speech. Additionally, works like
OneLLM [10] and X-LLM [11] extend the input set to various
modalities, including audio and visual. However, none of these
models can concurrently process audio and visual inputs, mean-
ing they cannot perform tasks like AV-ASR.

Since current multimodal language understanding ap-
proaches [4, 5] are limited to handling AV-ASR, and existing
MLLMs can only process tasks involving text plus one addi-
tional modality, this paper introduces the Synesthesia Language
Model (SynesLM). SynesLM is a novel, unified approach capa-
ble of performing a variety of audio-visual input tasks within
a single model. Drawing inspiration from the phenomenon of
synesthesia and leveraging advancements in recent language
models, SynesLM is meticulously designed to proficiently han-
dle complex language tasks such as audio-visual automatic
speech recognition (AV-ASR), visual speech translation (VST),
and visual machine translation (VMT). Additionaly, we pro-
posed a data recovery pipeline using LLM and image gen-
erative model for multimodal language understanding dataset
like How2 [12] to enhanced its multimodal interaction between
speech and visual modality.

We make the following contributions in this work:
• A unified model for multiple audio-visual tasks: We ex-

plore a novel framework capable of comprehending and pro-
cessing visual, speech, and textual data to perform various of



multimodal language understanding tasks.
• Synthetic visual data recovery pipeline: To address the

poor quality of visual data in multimodal speech datasets
like How2 [12], we developed a novel data recovery pipeline.
This pipeline significantly improved the integration between
visual and speech data.

• Performance: We achieved improved performance across all
tasks, recording a 4.0% WER absolute improvement in zero-
shot AV-ASR and BLEU scores of 43.5 for VST and 54.8 for
VMT, showcasing our model’s strong audio processing and
visual comprehension capabilities (Table 3).

• Reproducibility: For reproducibility, we open-source our
code and model checkpoints in the form of ESPNet recipe
in https://github.com/espnet/espnet.

2. Related Work
Multimodal Language Models (MLMs). Recently, numerous
MLMs have been proposed for various modalities. Advances in
Visual Language Models (VLMs), such as [6,13–18], have sig-
nificantly improved the integration of visual information into
pre-trained language models. These models use a pre-trained
vision encoder for visual feature extraction, excelling in tasks
like image captioning and visual question answering. Similarly,
recent studies [8, 19–25] have begun exploring unified models
for various speech and text tasks, employing self-supervised
learning (SSL) feature extractors as audio encoders alongside
pre-trained language models to enhance language comprehen-
sion. Some recent research [10, 11, 26–28] has attempted to in-
corporate both visual and audio modalities into language mod-
els. However, these models can only process one specific
modality with text and do not explore the interaction between
audio and visual modalities. The most related work to ours is
Video-SALMONN [29], but it lacks multilingual capabilities,
limiting its ability to perform translation tasks.
AV-ASR Methods. Several methods have been designed for
AV-ASR tasks. AV-HuBERT [3] uses video recordings to learn
robust speech representations through masked multimodal clus-
ter prediction, focusing on lip motion. AVATAR [4] employs
a multimodal encoder with a transformer decoder for natural
language speech recognition output. AVFormer [5] explores in-
jecting vision into frozen speech models for zero-shot AVSR,
showing the potential for lightweight domain adaptation. Addi-
tionally, prompting-whisper [30] designs a cascade model that
injects visual prompts for AV-ASR. However, these methods
are limited to AV-ASR tasks or utilize cascade structures, while
we design an end-to-end approach for multiple speech-visual
tasks.

3. Method
This section initially outlines the architecture of our model, fol-
lowed by a description of how we recover the multimodal data
and tokenize it.

3.1. Data Representation

Discrete Speech Representation. Recent advances in discrete
speech representations for ASR and ST have improved train-
ing speed, inference speed, and storage efficiency [31]. These
methods utilize SSL’s ability to capture linguistic and acoustic
information, surpassing previous techniques like log-Mel filter-
banks. By converting continuous audio features into discrete
speech tokens, speech input can be handled similarly to text to-

Figure 2: Synthetic Data Recovery Pipeline.

kens. This unification allows speech and text tokens, sharing
similar semantics, to be processed together in a single LM us-
ing a unified character set called discrete speech-text tokens.
Visual Encoders and Features. For the visual modality, we
randomly select a single frame from each video clip as the vi-
sual input, keeping the image whole rather than dividing it into
patches. This simplifies the extraction of object and action in-
formation, ensuring one frame provides sufficient details. Using
a pre-trained visual encoder from CLIP [32], we extract features
from the entire image. To bridge the visual and language modal-
ities, a Vision-Language connector layer (a Multi-Layer Percep-
tron) maps these visual features into the same embedding space
as the discrete audio-text tokens, aligning them with the lin-
guistic components. We also experiment with other CLIP-like
pretrained visual encoders [33,34] to explore their performance
in fusing discrete text-speech representations.
Data Format. We use several special tokens to indicate differ-
ent tasks and different modality. The entire sequence start with a
<SOS> token, end with a <EOS> token. We use a <IMG> token
to indicate the position of visual information in input sequence.
<start-of-text> and <start-of-speech> (<SOT>,
<SOSP> in Figure 1) represent the different input modalities.
<generate-text> (<GT> in Figure 1) indicate the output
modality of SynesLM. Moreover, the language token <LANG>
(e.g. <EN> and <PT>) in the input and output sequence can
indicate the source and target language, which enable the trans-
lation capacity of our framework. The arrangement of modal-
ity and language tokens in SynesLM facilitates its multitasking
capability, where each specific combination signifies a distinct
task. For example, the token combination {<IMG>, <SOSP>,
<EN>, <GT>, <PT>} represents the task of VST from English
to Portuguese.

3.2. SynesLM

Figure 1 illustrates the overall architecture of SynesLM. We
utilize a transformer-based decoder-only LM as our backbone.
We use pre-trained OPT model [35] to initialize our weights to
achieve better performance and training efficiency [36].

To process the speech inputs, SynesLM employs a SSL
feature extractor like HuBERT [37] and k-means to generate



   GT: Rope climbing
A+OV: Real climbing
A+SV: Rope climbing

   GT: My hangers already in the closet
A+OV: My hangers already in the clothes
A+SVi: My hangers already in the closet

    GT: Now with the tenkan motion
     A: Now with the tencone motion
A+OV: Now with the tenkan motion

    GT:That is a reverse layup
     A:That is a wrist lay up
A+OV:That is a reverse layup

Original image Synthetic image

Figure 3: Qualitative examples on How2 ASR. We show that our audio with original visual (A+OV) and audio with synthetic visual
(A+SV) method successfully extract and understand the information from the image and corporate the information with speech repre-
sentation to perform ASR task.

speech discrete tokens. The integration of visual information is
accomplished through a visual encoder and a Vision-Language
MLP projector. Details will be explained later in this section.

We concatenate the input text sequence Y = (yi ∈ Vtxt|i =
1, ..., ttxt) with the input discrete speech token(dst) sequence
D = (di ∈ Vdst|i = 1, ..., tdst) as the T -length discrete speech-
text token sequence Z = (zi ∈ V = Vtxt ∪ Vdst ∪ Vspecial|i =
1, ..., T ), where T = ttxt + tdst and Vspecial is the special token
set e.g. <LANG> etc. We feed the input discrete speech-text
sequence Z into the embedding layer to get the D-dimensional
embedding space expressed by E = (ei ∈ RD|i = 1, ..., T ).
Additionally, we add a single visual token in the D-dimensional
embedding space as V. We feed the visual embedding V and
discrete speech-text embedding E in to our auto-regressive LM.
The joint probability of the generated text sequence Y can be
expressed as:

p(Y ) =

T+1+L∏
i=T+1

p (Yi|V,E1:i−1) , (1)

where L is the generated text length.
During training and inference process, given the previ-

ous information V, E1:i−1, we can use this formula to pre-
dict the probability distribution in the next time step p̂i by
p̂i = SynesLM(Yi|V,E1:i−1). Then the cross entropy (CE)
loss of the model can be expressed as:

LCE (pi, p̂i) = −
|V|∑
c=1

pi(c) log p̂i(c), (2)

where pi is the reference probability distribution.

3.3. Data Recovery via Synthetic Image Data

We mainly utilize two different multimodal datasets in our
study:
• How2 [12] is a rich multimodal collection of instructional

videos with English subtitles and Portuguese translations. We
use the 300 hours subset of video content in this project. We
utilize the training set contains 182,167 clips, the validation
set includes 1,939 clips, and the test set consists of 2,298
clips.

• VisSpeech [4] is constructed by selecting 482 video clips
from the extensive HowTo100M dataset [38], aimed at cre-
ating a robust test set. The selected clips are characterized

by their strong visual-audio correlation, providing an ideal
platform to evaluate the effectiveness of our visual modality.

We use the How2 dataset [12] for training and testing. To
ensure the correlation between visual and textual data, we ini-
tially calculate the similarity score between the ground truth
transcription and the selected frame. As illustrated in Figure 2,
for a dataset containing image-text pairs, we input the images
and text into CLIP [32] to calculate the cosine similarity score
for each word in the ground truth. The distribution of similarity
scores indicates that over 62% of visual data have a similarity
score below 20%, reflecting the poor quality of the How2 visual
data. To address this issue, we designed a data recovery pipeline
to enhance modality interaction within the How2 dataset. If the
maximum score for each words in the sentence is below a given
threshold (τ = 0.2 in our experiment), we generate new visual
data based on the ground truth. For image data generation, we
first input the ground truth data into a Large Language Model
(LLM) to extract object or action information and generate an
image generation prompt based on that information. Finally,
we feed the image generation prompt into our image diffusion
model [39].

4. Experiments
4.1. Experiment Setup

According to the survey of dicrete representation [31], we fixed
our BPE size to 3K and k-mean cluster number to 2K since
How2 only contains about 300 hours of speech data. We did all
of our experiment on the open-source E2E speech processing
toolkit ESPNet [40]. For the speech encoder, we select XLS-
R [41] as our SSL feature extraction method. In all experiments,
we use 2× V100 GPUs for training our models. Our core model
is based on a Decoder-only Transformer architecture, featuring
12 layers with a 768-dimensional feature space and 12 attention
heads, culminating in a total of 125 million trainable parame-
ters. For multitask training, we ensured an equal distribution
of data across the different tasks. We froze the vision encoder
to concentrate training on the vision-language projector and the
decoder-only language model, achieving an end-to-end training
process.

4.2. Results

Table 1 shows the experimental results evaluating the impact of
visual features in both single-task and multi-task settings. Our



Table 1: Experimental results comparing on single-task and multi-task on different visual encoders. The relative improvement rate
represents the performance influence of incorporating visual modality to the original model under the certain tasks, the visual influence
in single-task or multi-task scenarios are calculated independently.

ASR (How2) ASR (VisSpeech) ST MT
WER(↓) WER(↓) BLEU(↑) BLEU(↑)

How2 Baseline w/ visual [12] 18.0 - 37.2 54.4

Single w/o visual 17.6 41.6 40.5 55.2
Single w/ visual (CLIP [32]) 17.0 (+3.41%) 41.7 (-0.24%) 40.7 (+0.49%) 55.6 (+0.72%)
Single w/ visual (EVA-CLIP [34]) 17.6 (+0.00%) 40.4 (+2.88%) 41.3 (+1.98%) 54.7 (-0.91%)
Single w/ visual (SigLIP [33]) 17.3 (+1.70%) 42.3 (-1.68%) 41.4 (+2.22%) 54.7 (-0.91%)

Multi w/o visual 16.4 40.8 42.9 54.7
Multi w/ visual (CLIP [32]) 16.1 (+1.83%) 40.1 (+1.72%) 43.0 (+0.23%) 54.0 (-1.30%)
Multi w/ visual (EVA-CLIP [34]) 15.9 (+3.05%) 40.2 (+1.47%) 43.4 (+1.17%) 53.9 (-1.46%)
Multi w/ visual (SigLIP [33]) 15.7 (+4.27%) 39.4 (+3.43%) 43.5 (+1.40%) 54.8 (+0.18%)

Table 2: Ablation Study. Experimental AV-ASR task results
comparing the visual influence on multi-task SigLIP [33] en-
coder. Random visual means randomly select the visual features
from other video clips.

ASR (How2)
WER(↓)

ASR (Visspeech)
WER(↓)

Multi w/o visual 16.4 40.8
Multi w random visual 16.4 41.0
Multi w visual 15.9 39.4
Multi w visual + synthetic 15.7 39.4

methodology is evaluated across three distinct tasks: ASR, ST,
and MT. Furthermore, we explore the effectiveness of three dif-
ferent visual encoders [32–34] to determine which encoder best
aligns with speech-text discrete representations.

There are some notable instances where the visual modality
enhances ASR task performance. As demonstrated in Figure 3,
visual cues are instrumental in recognizing seldom-used vocab-
ulary, especially when there is a strong correlation between the
visual content and these specific words. This highlights the po-
tential of language models to comprehend visual information
and merge it with speech data for a multimodal understand-
ing. The findings indicate that incorporating SynesLM’s vi-
sual modality consistently enhances performance across all the
tasks when compared to an audio-only baseline (e.g., improv-
ing the WER from 16.4% to 15.7% in a multitask setting using
SigLIP [33]). Among the visual encoders tested, CLIP [32]
achieves the highest performance in single-task experiments.
On the other hand, in the multitask framework, SigLIP [33]
demonstrates superior efficacy, notably achieving a 3.43% rela-
tive performance increase in the zero-shot AV-ASR on the Vis-
Speech [4] dataset. Furthermore, to delve deeper into the impact
of visual features, we conduct an ablation study where the vi-
sual input is replaced with a random image. As shown in Table
2, the WER for the random visual input scenario increases from
15.7% to 16.4%, which is the same as the performance without
visual input. In addition, our synthetic data recovery technique
further improves the performance from 15.9% to 15.7%, indi-
cating that better audio-visual correlation could further benefit
model performance. This outcome underscores the robustness
of our model in audio-visual tasks.
Compare with the SOTA methods. In Table 3, we com-

Table 3: Comparison with the state-of-the-art on AV-ASR task.
The train set section for last two rows indicates that those
methods use additional dataset other then How2 [12] for pre-
training. † denotes initialization with OPT. Results are reported
as WER (%, lower is better).

Method Train Set How2 VisSpeech

How2 Base [12] 300hrs 18.0 -
LLD [42] 300hrs 16.7 -
VAT [43] 300hrs 18.0 -

MultiRes [44] 300hrs 20.5 -
AVATAR [4] 300hrs 15.6 43.4

Ours† 300hrs 15.7 39.4

AVFormer [5] 960hrs + 6500hrs 13.6 16.6
AVATAR [4] 300hrs + 131k hrs 9.1 11.3

Prompt-whisper [30] 680k hrs - 7.16

pare our model with state-of-the-art methods on the AV-ASR
task. The results demonstrate that our approach surpasses most
of the methods when utilizing only the How2 dataset. Note
that, both AVATAR [4] and AVFormer [5] pretrain on the vast
HowTo100M [38] dataset, which makes them perform well ex-
plicitly on single AV-ASR task. Contrary to the design purposes
of these models, we aim to explore an unified model architec-
ture for different audio-visual related tasks. Under the multi-
tasking scenario, our model not only retains high performance
in the AV-ASR task but also surpasses the How2 baseline in ST
and MT tasks. Specifically, as shown in Table 1, we observed
a significant improvement in the BLEU score for ST, increas-
ing from 37.2 to 43.5. Similarly, for MT, there was a modest
enhancement from 54.4 to 54.8 in the BLEU score.

5. Conclusion
We introduce SynesLM, a novel multimodal language model
designed for multiple audio-visual tasks. SynesLM outperforms
existing single-task methods, showcasing the effective integra-
tion of audio and visual data. The experiments also reveal
SynesLM’s ability to synergize auditory, textual and visual in-
formation effectively. The results underscore SynesLM’s profi-
ciency across all evaluated tasks and highlight its potential for
broader applications in audio-visual processing.
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