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Abstract
The rapid development of neural text-to-speech (TTS) systems
enabled its usage in other areas of natural language processing
such as automatic speech recognition (ASR) or spoken language
translation (SLT). Due to the large number of different TTS ar-
chitectures and their extensions, selecting which TTS systems
to use for synthetic data creation is not an easy task. We use
the comparison of five different TTS decoder architectures in
the scope of synthetic data generation to show the impact on
CTC-based speech recognition training. We compare the recog-
nition results to computable metrics like NISQA MOS and in-
telligibility, finding that there are no clear relations to the ASR
performance. We also observe that for data generation auto-
regressive decoding performs better than non-autoregressive de-
coding, and propose an approach to quantify TTS generalization
capabilities.
Index Terms: speech recognition, synthetic data generation,
text-to-speech

1. Introduction
The usage of synthetic data from text-to-speech (TTS) systems
in the context of automatic speech recognition (ASR) has been
explored in many different ways. This ranges from sim-
ply generating new data [1, 2] to jointly training ASR and
TTS systems [3]. Prior work improved the integration of the
synthetic data into the ASR systems, for example by differ-
ent weighting of synthetic inputs [4], or the usage of internal
ASR model statistics to reject synthetic samples not matching
the real data [5]. As most publications aim to introduce new
methodologies, in each case they usually use one specific TTS
architecture and one specific ASR architecture. The number
of fundamentally different ASR architectures is rather limited
and roughly categorized into: Hybrid deep neural network hid-
den Markov model (DNN-HMM) [6], connectionist-temporal-
classification (CTC) [7], Transducer [8] and Attention-Encoder-
Decoder (AED) [9]. For TTS there is a vast amount of different
architectures and models, especially when including different
approaches of multi-speaker modeling [10]. From the perspec-
tive of working on ASR this makes it very difficult to choose
which TTS system to use for synthetic data generation. In ad-
dition, human evaluations are not suited to evaluate data for
training purposes, as conducting the evaluation usually takes
more time than running the training itself. Then, evaluation for
naturalness and human subjective evaluations alone can not be
expected to be a sufficient criterion for utility estimation of syn-
thetic data. Instead, aspects like speaker diversity, temporal di-
versity or expressiveness in general are assumed to be relevant
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to yield good results by integrating synthetic data into the ASR
process [11, 12]. Unfortunately, those aspects are difficult to
quantify. Furthermore, LJSpeech [13] is often the only com-
mon dataset to compare new TTS architectures, which can not
be expected to give representative results for the multi-speaker
case [14]. This is especially relevant as one might not have
training data suited for TTS training at hand for a particular do-
main or language, but instead has to use the ASR data.

Motivated by those problems, we present an experiment
pipeline to systematically analyze the relation of TTS gener-
ated data to ASR training. For this we compare different de-
coder architectures, which are based on: Non-autoregressive
(NAR) Transformer similar to FastSpeech-2 [15], autoregres-
sive (AR) long-short term memory (LSTM) similar to Non-
attentive Tacotron [16], Glow-TTS [17] as flow-based decoder
and Grad-TTS [18] as diffusion based decoder. We keep the
rest of the TTS systems as simple as possible, using a Trans-
former encoder and convolution based duration prediction net-
work, as used in [15, 17, 19]. Given the large amount of possible
TTS architectures, we choose these systems for multiple rea-
sons: First, they have a widespread recognition in the scientific
community. Then, they already share similar encoder and up-
sampling concepts, sometimes even using the same code, which
makes comparison easier. Finally, they do not require training
with an integrated vocoder model (as e.g. in VITS) which would
make a direct comparison more difficult. While comparisons of
different TTS architectures with respect to naturalness and ex-
pressiveness exist [20], this is to our knowledge the first work
covering a broader range of different TTS output characteristics
and quality levels targeted for ASR training. Also, we perform
a direct comparison of NAR vs AR decoding for data genera-
tion with a consistent sequence mapping method. Lastly, we
present a way of measuring generalization of the TTS systems
with respect to ASR training data generation by using different
conditions for synthesizing the training data. The Sisyphus[21]
based setup and additional materials are available on Github1.

2. Text-to-speech systems
2.1. General architecture

In the design of the TTS systems we follow what we found to
be most prevalent in recent literature. After the introduction of
Transformer blocks with convolution for TTS [19] and the es-
tablishing of duration based state up-sampling [22], many sys-
tems continued using these components. Thus, for each system
we use the same layout of a Transformer based-encoder, a con-
volution based duration predictor and a discrete encoder state

1https://github.com/rwth-i6/i6_experiments/tree/
main/users/rossenbach/experiments/jaist_project
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Figure 1: The TTS architecture. We change the decoder marked
in red for each of the different systems.

up-sampling method. Only the decoder, which converts the up-
sampled encoder states hT

1 into the final log-Mel spectrograms
xT
1 , is changed. Figure 1 shows the TTS architecture used in

this work. We do not use explicit f0 or energy prediction.
The overall structure follows exactly Glow-TTS, in which many
parts were taken from TransformerTTS [19] or FastSpeech-2.
We also used the code of the official Glow-TTS repository as
reference for our implementation.

2.2. Decoder variants

A large amount of proposed TTS decoder architectures can be
categorized into three groups: Direct prediction, flow and diffu-
sion. Direct prediction means that the output of the TTS neural
network is a log-Mel spectrogram which is trained to directly
match the target xT

1 . Common losses are mean absolute error
or mean squared error. The generation is a single forward pass
through the decoder network gθ , which can be written as:

x̂T
1 = gθ(h

T
1 ) (1)

The generation can also be done in an auto-regressive manner:

x̂t = gθ(h
t
1, x̂

t−1
1 ) (2)

For flow-based TTS systems, the decoder is an invertible neural
network that can be applied in both directions from the spectro-
grams xT

1 into latent space variables zT1 and vice-versa. Dur-
ing training, the target features are transformed into the latent
space and matched against a normal distribution with a mean
µT
1 = µθ(h

T
1 ) and unit variance. The target objective is to

maximize the likelihood of the latent space samples given the
distributions. For inference, the latent space values are sampled
from the distribution with a mean function µθ , temperature τ ,
and passed backwards through the flow fθ:

ẑT1 ∼ N (µθ(h
T
1 ), τ1) and x̂T

1 = f−1
θ (ẑT1 ) (3)

For the diffusion-based TTS system we follow the Grad-TTS ar-
chitecture. A normal distribution as in the flow-based approach
is used to sample a noisy output spectrogram X̂I with X = xT

1 .
The noise spectrogram is cleaned in I steps using a differential
equation containing the solver network sθ and pre-defined noise
schedule βi to reach the final output X̂0:

X̂I ∼ N (µθ(h
T
1 ), τ1) (4)

X̂i−1 = X̂i −
1

2I

(
µθ(h

T
1 )− X̂i − sθ(h

T
1 , X̂i)

)
βi (5)

For each of the decoder principles we implemented one model
for which the details will be presented later in Section 4.3.

Table 1: TTS model parameter count, training time on Nvidia
A40 GPU and inference real-time-factor on AMD Epyc 7H12
CPU using 2 physical cores and including Griffin & Lim.

TTS Decoder # params training
time

CPU
RTF

Transformer 24.4M 70h 0.069
NAR LSTM 29.3M 27h 0.025
AR LSTM 33.6M 94h 0.028
Glow-TTS 57.3M 53h 0.036
Grad-TTS 25.5M 61h 0.866

3. Evaluation pipeline and metrics
To evaluate the TTS systems in the context of ASR, we train
a CTC-based ASR system purely on data generated by TTS.
We generate the same amount of data as used for the baseline
training, and measure the performance of the ASR systems in
word error rate (WER) for recognizing real human speech. In
the optimal case, the performance of the ASR system trained on
the synthetic data would match the performance of the system
trained on real data. In order to evaluate the generalization ca-
pabilities of TTS towards new conditions, we generate the syn-
thetic data in 3 ways: a) using exactly the same text and speaker
assignment as in training, b) using the same text but shuffling
the speakers and finally c) using the same amount of text from a
different corpus in the same domain. That way we can measure
how good the TTS systems are at generalizing to new condi-
tions different from the training. The main evaluation criterion
to measure the utility of the TTS-generated data is the WER of
the trained ASR systems calculated on the official LibriSpeech
[23] test sets. In addition, we use metrics directly on the syn-
thetic data to evaluate their relation to the final WER. We use
NISQA [24] as a tool to generate automatic mean-opinion-score
(MOS) values. While computer generated MOS values are not
a replacement for subjective evaluations, they can be used as
tool to determine naturalness as possible indicator for the ASR
performance. Subjective evaluation itself can not be useful to
evaluate synthetic data in a development process, as doing the
evaluation often takes more effort than simply training the ASR
system. We also use a larger ASR model trained on the full Lib-
riSpeech corpus to recognize the synthesized cross-validation
data to check for completeness and pronunciation correctness.
We refer to this metric as synthetic WER (sWER). In the lit-
erature this is often called intelligibility metric, and sometimes
character error rate is used instead of WER , e.g. in [25].

4. Experiments
4.1. Data

We use the LibriSpeech train-clean-100 as baseline data to train
the TTS and ASR models, and the transcriptions of train-clean-
360 as additional text data. This is a common setup that has
been used extensively in previous literature [1, 2, 4]. We sub-
sample the exact same amount of utterances, roughly 28k, from
train-clean-360 to have the same amount of unseen text as text
in the training data. We take 4 utterances of each of the 251
speakers in train-clean-100 out of the TTS training data to have
a cross-validation set to report MOS and sWER. We perform no
further pre-processing of the data, unlike other work [2, 11]. I.e.
no excessive silence is removed, and no speakers are discarded.
We use the official LibriSpeech lexicon for word-to-phoneme
conversion and use Sequitur [26] to generate phonemes for
words that are not in the lexicon. For ASR, we augment the
phoneme set with end-of-word markers as presented in [27].



4.2. Automatic speech recogition

As ASR system we use a CTC model with a Conformer-
based [28] encoder with 12 blocks, a base dimension of 384 and
a convolutional frontend with a sub-sampling factor of 4. For
recognition we use the lexicon-constrained Flashlight [29] CTC
decoder via the available Torchaudio interface. The search pro-
cess includes the official LibriSpeech 4-gram LM model. Since
it has been shown that synthetic data generation is successful
mostly for AED-ASR [2], we chose the context-free phoneme-
based CTC-ASR specifically for the reason that it should be
influenced less by changing or adding new text.

4.3. Training and model settings

All models are trained using 80-dimensional log-Mel spectro-
gram features, for TTS with 12.5ms shift and for ASR with
10ms shift and SpecAugment [30] applied. The TTS models are
trained with Adam [31] for 400 epochs. For all models except
Grad-TTS we use linear learning rate (LR) scheduling, which
we found to perform better than inverse square reduction. We
increase the LR from 5e-5 to 5e-4 for the first 100 epochs, and
reduce linearly from 5e-4 to 5e-7. For Grad-TTS we use a con-
stant LR of 1e-4. The ASR models are trained using AdamW
with weight-decay 1e-3 for roughly 80 epochs and a maximum
learning rate of 7e-4. We generate an alignment by training
the Glow-TTS system once using implicit alignment search. In
each TTS training the fixed alignment is used for up-sampling
and as target for the duration predictor. For vocoding, we con-
vert the log-Mel to linear features using a separate BLSTM-
based network and apply the Librosa Griffin & Lim (G&L) [32]
function with 32 iterations and momentum of 0.99.

4.3.1. TTS parameter settings

For the different decoder architectures the number of parame-
ters, training time and inference time differ, as shown in Table
1. Making a fair comparison is difficult, as for each system we
would need to do extensive tuning experiments until we reach
the optimal performance. Thus, we stick mostly to the sizes
presented in previous publications. Due to the high cost of sub-
jectively evaluating TTS systems, ablation studies on the model
sizes are usually not presented in scientific publications.

Base model: For the TTS Transformer encoder we use 6
layers with an internal dimension of 256, preceded by 3 convo-
lution layers with 256 channels and kernel size 5. The duration
prediction network uses 2 convolutions with kernel size 3 and
384 channels.

Transformer decoder: For the Transformer-based decoder
we simply re-use the same structure as for the encoder Trans-
former, having 6 layers with an internal base dimension of 256.
The system is trained using L1 loss on the output spectrograms.

Autoregressive LSTM decoder: For the AR-LSTM de-
coder we are using 2 layers of 1024-dimensional Zoneout-
regularized LSTM layers. We use a reduction factor of 2 to
predict two feature frames per decoder step. The pre-net for the
AR feedback loop and the convolutional NAR post-net are de-
rived from [16]. We apply L1 loss for both the decoder output
and the combined prediction with the post-net.

Non-autoregressive LSTM decoder: This decoder is sim-
ilar to the AR decoder, but we remove the AR feedback loop
network, and replace the uni-directional Zoneout LSTM cell by
a normal bi-directional LSTM with dropout. Each LSTM di-
rection has 512 dimensions. For Transformer, AR- and NAR-
LSTM, a 256-dimensional speaker embedding vector is con-

Table 2: Evaluation of the different TTS decoder architectures.
We use 28k sequences from train-clean-360 for the synthetic
training data generation and the cross-validation subset to eval-
uate NISQA MOS and the sWER. The reference values are the
training / evaluation on the real audio. For MOS we include the
95% confidence interval using the bootstrap method from [33].

TTS Decoder
Syn. data ASR NISQA

MOS↑
sWERtest [WER %]↓ [%]↓clean other

Transformer 11.8 33.7 2.74 ± 0.05 1.6
NAR LSTM 10.2 30.5 2.87 ± 0.05 1.7
AR LSTM 9.4 28.4 3.08 ± 0.05 2.5
Glow-TTS 13.8 34.9 3.33 ± 0.04 10.8
Grad-TTS 11.5 30.0 2.47 ± 0.05 15.1
Reference 5.1 14.9 4.06 ± 0.07 1.6

catenated to each upsampled encoder state.
Glow-TTS decoder: For a flow-based decoder, includ-

ing speaker conditioning, we follow exactly the architecture of
Glow-TTS [17]. The decoder consists of 12 invertible coupling
blocks with an internal dimension of 256. We merge each 2
consecutive frames for a latent-space dimension of 160.

Grad-TTS decoder: For a diffusion-based model we fol-
low the architecture and settings of Grad-TTS [18]. As the orig-
inal architecture is not designed for multi-speaker TTS, modi-
fications were necessary for convergence. We added two addi-
tional Transformer layers on top of the 6 encoder layers which
are conditioned on the speaker embedding. That way, we have
a speaker-conditioned mean prediction network. We also used
the same speaker embeddings to condition the u-net, which is
used for the differential equation solving. We found τ = 0.7 to
be the optimal noise scale for both Glow-TTS and Grad-TTS.

5. Results
5.1. Synthetic data, automatic MOS and recognizability

In a first comparison we evaluated the systems via the synthetic
data only ASR training, the NISQA MOS and the sWER. Table
2 shows the results of each of the five decoders compared to the
reference values of the real data. For all metrics we used text
data unseen during training. With respect to the final ASR train-
ing evaluation, all TTS systems have a reasonable performance
and there is no strong outlier. In general, using the synthetic
data for training results in a system with double the error rate
when training TTS only on the available ASR data, which is a
consistent result to previous literature [5, 11]. [34] showed that
even when using vast amounts of training data to create strong
foundation-model sized TTS models, the generated synthetic
data seems to be not yet on par with real data. The AR-LSTM
decoder produces the best synthetic training data, which is un-
expected as the Glow-TTS and Grad-TTS should produce more
expressive and variable audio due to their internal sampling pro-
cess. Also, Glow-TTS is the only system that exactly follows
the given literature, while the other systems have small adap-
tations or are simplifications of the original model architecture.
The third and fourth column in Table 2 show the NISQA MOS
and the sWER on the TTS cross validation set. It is visible that
there is no direct relation of the two metrics compared to the
final ASR performance. For example, when comparing Grad-
TTS to the Glow-TTS and Transformer decoder, there is a lower
MOS and a much higher sWER, but still the final system per-
formance is better. This means both metrics are not reliable to
determine which system to pick for data generation.



Figure 2: Example spectrograms of a selected sequence from
the cross validation set. Used TTS decoder from top to bottom:
a) Transformer b) AR-LSTM c) Glow-TTS d) Grad-TTS

5.2. Decoder characteristics

In Figure 2 we show a selected sequence synthesized by four
different decoders. The Transformer decoder spectrograms are
smooth, lacking a lot of detail in the high-frequency area. The
AR-LSTM spectrogram in comparison has much more details.
The spectrogram from Glow-TTS shows visible noise result-
ing from the latent space sampling. It also has less distinct
boundaries between the phonemes, but rather fuzzy transitions,
which might be an explanation for the worse recognizability.
The Grad-TTS has less distorted spectrograms than Glow-TTS,
but we found that for very short sequences the output is some-
times just a noisy grid pattern. Also the voice lines become very
blurred together for lower frequencies, causing a very unnatu-
ral sound, which matches with the low automatic MOS score.
Thus we assume, that the NISQA MOS and the sWER are very
sensitive to certain artifacts that have less impact in on the ac-
tual ASR training. One can see that all four TTS decoders
produce spectrograms with different characteristics, even with
other components being identical. Thus, it is important to not
only consider a single TTS architecture when trying to show
a general relation between the ASR performance and metrics
calculated on the level of the TTS system or the synthetic data.

5.3. Generalization

Table 3 shows how good the TTS systems generalize with re-
spect to the synthetic data generation task. Recall that condition
a) means to exactly reproduce the training data, so with perfect
memorization during training it would be possible to produce
identically performing data. It is visible that across all models
the values for a) and c) are mostly not too far from each other,
so the generalization abilities are high. This gives a hint that
current models are under-fitting and much larger models might
yield better results, even on very constrained datasets such as
LibriSpeech 100h. For synthesizing new text, so comparing b)
to c), most models show no or only a small change. Only for the
AR LSTM and Glow-TTS decoder there is meaningful degrada-
tion in the WER, mostly for the "other" test. For the Glow-TTS

Table 3: Comparison of the different TTS decoder architec-
tures regarding overfitting conditions by synthesizing data with
a) same text and same speaker as in training b) same text and
shuffled speakers c) new text of same amount.

TTS Decoder
test [WER %]↓

clean other
a) b) c) a) b) c)

Transformer 11.1 11.8 11.8 32.5 33.5 33.7
NAR LSTM 9.7 10.1 10.2 30.0 30.2 30.5
AR LSTM 8.8 9.1 9.4 26.3 27.1 28.4
Glow-TTS 12.6 13.3 13.8 31.0 32.9 34.9
Grad-TTS 11.0 11.5 11.5 28.0 30.1 30.0
Reference 5.1 14.9

a possible reason could be that it suffers from pronunciation is-
sues, which get even stronger when synthesizing new text. Test-
ing for the generalization capabilities of TTS this way might not
be used only for the comparison of different models like in this
work, but allow for easier hyperparameter tuning which is usu-
ally not done extensively in TTS literature.

5.4. Discussion

When training with synthetic data only, we achieved a WER
performance which is less than factor 2 worse compared to
training on the real data. In relation, [5] reported reaching ra-
tios of around 2 on the LibriSpeech-960 task, and [11] reported
ratios of more than 3. In this work we specifically investigated
decoder architectures. In future work this gap can be reduced by
extending the results of this work with extensive hyperparame-
ter tuning as well as prosody [11] and more sophisticated du-
ration modeling [12]. We have seen that NISQA MOS and the
sWER are not reliable to determine the usefulness of the TTS
system for ASR data generation. This means there are more
and/or different metrics needed to give accurate estimates about
how good the synthetic data can be utilized for ASR training.
While in our work synthesizing new data and training the ASR
systems was done in less than a day, this becomes much more
of a problem when training large models on magnitudes more
of data. Thus, we think it is important to find ways to estimate
the capabilities of TTS models before starting large-scale data
generation.

6. Conclusion
In this work we evaluated different TTS decoder architectures
w.r.t. their ability to generate synthetic data for ASR train-
ing. We compared five different TTS decoder architectures and
found that for our setup the AR-LSTM-based system with L1
loss performed best in creating training data for ASR. We were
able to create synthetic data that performs less than a factor of
2 worse than real data while training the TTS only on the same
data as available for the ASR training. We observed that the
systems’ outputs differ from each other in many aspects such
as naturalness or pronunciation accuracy. Still, the metrics we
used to capture them showed a surprisingly low correlation to
the performance of the ASR systems trained on such outputs.
This indicates that better metrics have to be found in order to do
a meaningful evaluation of TTS systems before using it to cre-
ate synthetic training data. We also introduced a way to measure
the generalization capabilities of TTS systems for data genera-
tion, which can be used to optimize TTS towards being able to
generate data that reaches parity with real data.
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