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Abstract
Foundational models have advanced speech technology

while introducing privacy concerns due to the sources and vol-
ume of pre-training data required. Synthetic speech could be an
alternative as short utterances are indistinguishable from nat-
ural speech but limitations in prosody and tonal variation im-
pact longer durations. We investigate if synthetic text-to-speech
(TTS) systems have reached a point where it can substitute for
natural speech in pre-training models for speech-based down-
stream tasks, e.g. phoneme recognition (PR). We also explore
the degree to which these synthetic samples can be used when
data augmentation is required. We pre-train three models using
(i) natural speech; (ii) synthetic TTS cloned speech matched
to the natural speakers; (iii) unmatched speech using standard
voices provided by the state of the art VITS TTS system. They
were fine-tuned for a PR task and results show TTS data does
not currently contain the long term speech characteristics to re-
place natural speech in pre-training but has potential for low
resource data augmentation.
Index Terms: synthetic speech, TTS quality, phoneme recog-
nition

1. Introduction
The recent advancements in speech technology powered by
foundational models are undeniable [1, 2]. However, these ad-
vancements raise concerns about privacy due to their reliance
on vast amounts of real human speech data. In this context, the
use of synthetic speech data steps in as a transformative solu-
tion, enabling the ethical, inclusive, and adaptable development
of speech models. This approach also safeguards the user’s pri-
vacy and guarantees adherence to user data usage principles.
Synthetic speech generation has also made significant improve-
ment thanks to deep learning models [3, 4, 5]. These models can
produce realistic voices, blurring the line between human and
machine, and they can ease the use of natural speech for many
speech-based technological tools (e.g., voice assistant [6], ma-
chine translation [7]). However, several aspects still need to be
explored to implement highly efficient speech-based tools. For
instance, current evaluation methods for speech quality might
not be keeping pace with the rapid advancements of synthetic
speech generation, making it difficult to pinpoint areas for fur-
ther improvement [8]. Also, even the most advanced systems
can struggle with conveying emotion and natural intonation, es-
pecially when creating longer pieces of speech, leading to a
feeling of artificiality that remains an open area of research [9].

As synthetic speech generation technology advances, con-
cerns regarding cloning and identity theft are emerging [10].
With the ability to create highly realistic speech that mimics
a specific person’s voice, malicious actors could potentially

exploit this technology for fraudulent purposes. Imagine a
scenario where someone’s voice is used to impersonate them
on a phone call, enabling unauthorised transactions or spread-
ing misinformation. This concern is particularly serious be-
cause unlike other forms of identity theft, voice cloning can be
achieved without physical access to a person.

To address these aspects, we conducted a set of experiments
training and analysing the performance of different speech-
based models using both natural and synthetic speech. We rely
on the LibriSpeech dataset [11] for our natural speech subset;
meanwhile, two synthetic speech subsets were generated us-
ing a cutting-edge TTS system, the Variational Inference with
adversarial learning for end-to-end Text-to-Speech (VITS) [3].
For the first synthetic speech set, the TTS system cloned voices
matching those in the natural speech set (matched synthetic).
As for the second synthetic speech set, we used standard voices
available at the TTS system (unmatched synthetic). These
speech datasets were used to train different models and analyse
the key factors that influence the effectiveness of using synthetic
speech for training speech-based models.

Three experiments were carried out for this study. The first
experiment compares the performance of a Autoregressive Pre-
dictive Coding (APC) [12, 13] model pre-trained with natural
and synthetic speech targeting a PR task. The second exper-
iment investigates these pre-training datasets using a speech
quality model, analysing their quality predictions distribution
and the speaker characteristics (pitch, speaking rate, and inten-
sity) of the datasets. Finally, a third experiment explores how
TTS augmentation compares to 100% synthetic speech or nat-
ural speech augmented with noise/pitch perturbation/accented
natural speech under a low resource scenario where a small
amount of natural speech is available. This study will shed light
on the current capabilities of synthetic speech for replacing nat-
ural speech in pre-training of speech models. It will also reveal
crucial factors influencing model performance, allowing us to
refine synthetic speech generation for optimal results.

2. Datasets
For this experiment we have generated two synthetic speech
dataset equivalent to a natural speech dataset and used those
datasets to pre-train a self supervised model with a downstream
task of PR. We also used a pre-trained self-supervised model to
predict quality of the audio samples used in pre-training to find
out the correlation between the quality of pre-trained data and
the downstream prediction task.

2.1. Pre-training data

To comprehensively evaluate the impact of synthetic speech on
PR model pre-training, we use three datasets:



Natural: Our baseline dataset consists of 100 hours of
real human speech data from the LibriSpeech [11] corpus,
specifically the Train-Clean-100 subset. Matched Syn-
thetic: This dataset mirrors Train-Clean-100 speakers us-
ing cloned speaker synthetic speech generation to match the
natural speakers. Unmatched Synthetic: Synthetic speaker us-
ing standard speaker voices from VITs system unmatched to
Train-Clean-100 apart from gender balance.

We are not only investigating the effect of using synthetic
speech, but also how the size of the pre-training data influences
performance. To address this, each dataset (natural and syn-
thetic) has been divided into three subsets – 25 hours, 50 hours,
and 75 hours. These subsets preserve the original speech con-
tent and speaker distribution across all three datasets. Each 25-
hour subset encompasses 62 speakers, with an even balance of
31 males and 31 females. This provides a consistent setup for
analyzing the impact of both synthetic speech and dataset size
on PR model performance.

For our experiment we are using LibriSpeech1 [11] as our
natural speech dataset. The LibriSpeech corpus consists of
1,000 hours of read English speech from LibriVox audiobooks
for Automatic Speech Recognition (ASR) and related tasks.
This dataset has gained widespread adoption as a benchmark
in various research areas like ASR [14], speaker identifica-
tion [15], and language modelling [16]. This freely available
resource features 2,484 speakers reading diverse texts (fiction,
non-fiction, poetry) from Project Gutenberg2. The speech un-
derwent manual segmentation and annotation, resulting in time-
aligned word labels with their corresponding transcript.

Our Natural dataset is divided into balanced subsets, and
we are using the Train-Clean-100 subset to train the models
for our experiment. The Train-Clean-100 subset contains
100.6 hours of Speech recordings with high audio quality and
verified transcripts. This subset of LibriSpeech features record-
ings from 251 speakers. There is a balanced mix of genders,
with 125 females and 126 males represented. While the aver-
age speaker contributes roughly 24 minutes of audio, there is
some variation, e.g. recording range fro 5.44 – 25.25 mins.

To finetune the PR models, we used a 10-hour subset of
speech data extracted from LibriSpeech’s Train-Clean-360
subset. We then evaluated the models’ performance on the
Test-Clean subset of LibriSpeech. Both the fine-tuning data
(10 hours) and the test data used phoneme labels from [17].

This experiment utilises a VITS model [3] trained on a
vast and diverse dataset of roughly 1,200 speakers which in-
cludes 895 speakers from the LibriTTS corpus [18], which was
specifically created from the LibriVox project for training TTS
models. Notably, LibriTTS shares the same speakers as Lib-
riSpeech.

The VITS model, generously provided by our industry part-
ner Xperi, generates the synthetic audio by taking a speaker ID
and a transcript as input. The generated audio mimics the speak-
ing style of the specified speaker, which the model has encoun-
tered during training. This significantly simplifies the challenge
of creating a balanced synthetic dataset that reflects the speaker
and speech characteristics found in LibriSpeech.

We generated two synthetic datasets: Matched Synthetic
containing the same speakers from the LibriSpeech Train-
Clean-100 subset and Unmatched Synthetic with the same
content but speakers replaced with random speakers from the
Train-Clean-360 subset, maintaining speaker gender. As

1https://www.openslr.org/12
2https://www.gutenberg.org/

previously explored by [19], all LibriSpeech subsets share sim-
ilar speaker and speech characteristic distributions. Therefore,
both our synthetic datasets inherit this characteristic. The raw
transcripts within LibriSpeech lacked punctuation, potentially
affecting the generated speech’s fluency and intonation. To ad-
dress this, we employed a deep learning punctuator model [20]
to preprocess the transcripts before feeding them into the TTS
model. This step ensures high-quality synthetic speech genera-
tion.

3. Pretraining with TTS Speech
To address privacy concerns associated with using real human
speech to train speech-based models, this experiment explores
the possibility of replacing the natural speech with TTS gener-
ated synthetic speech in the pre-training of speech based mod-
els like APC model for PR. We investigate how this substi-
tution impacts the performance of the model on downstream
tasks. We have pre-trained the APC model with 25, 50, 75
and 100 hours of natural, matched synthetic and
unmatched synthetic dataset. Following pre-training,
these models are fine-tuned with 10 hours data from Train-
Clean-360. Finally the performance of the models are evalu-
ated on the Test-Clean subset.

The APC model is based on a 3-layer Long Short-Term
Memory (LSTM) [21] architecture, each with hidden layer
of 512 units. The APC model ingests a sequence of mel-
spectrogram features as input, representing the spectral content
of the speech signal. The model then processes these features
and outputs a 512-dimensional vector representation for each
input frame. During training, the model aims to predict the
mel-spectrogram features of future frames, specifically a 3-step
prediction horizon. The model’s prediction accuracy is evalu-
ated using Mean Squared Error (MSE) [22] loss between pre-
dicted and actual future frames. To prepare the model for the
downstream PR task, a feed-forward linear layer is added on top
of the final LSTM layer’s output. This linear layer transforms
the 512-dimensional representation into a probability distribu-
tion over the total number of phonemes in the target language.
A log softmax function is applied to convert the linear layer’s
output into probabilities suitable for classification. Finally, the
cross-entropy loss function is used to measure the difference be-
tween the predicted phoneme probabilities and the ground truth
phoneme labels. Other hyper-parameter settings are consistent
with [12].

3.1. Natural vs. synthetic speech pretraining

Figure 1 shows the phoneme classification accuracy as percent-
age against the pre-training dataset size in hours for the three
pre-training dataset. The natural, matched synthetic
and unmatched synthetic datasets are represented by
blue, magenta and green color respectively. A significant per-
formance gap can be seen between models pre-trained with nat-
ural and synthetic data. Regardless of the pre-training data size
(25, 50, 75, or 100 hours), models trained on natural data con-
sistently outperform those trained on synthetic data. Interest-
ingly, a minor difference exists between the performance of
models pre-trained with matched and unmatched speaker syn-
thetic datasets. After 50 hours of pre-training or more, the un-
matched speaker model shows a slight edge over the matched
speaker model. Notably, achieving performance comparable
to models trained with natural data requires considerably more
synthetic data – approximately 50 hours or more. For instance,
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Figure 1: Performance of APC model for natural (blue) and
synthetic (green and magenta) pre-training data of different size
(25, 50, 75 and 100 hours)

to reach the accuracy achieved by a model pre-trained with 25
hours of natural data (around 52%), we would require 75 hours
of synthetic data. Similarly, to match the performance of a
model pre-trained with 50 hours of natural data, we would need
over 100 hours of synthetic data.

3.2. Exploring TTS quality and speech characteristics

To gain insights into the significant performance gap observed
between models pre-trained with natural and synthetic speech,
we have analysed the speech quality and various speech char-
acteristics of these datasets. This analysis aims to identify po-
tential shortcomings in synthetic speech compared to natural
speech and understand the root causes of the performance dif-
ference. Descriptions of the models used to estimate speech
quality and the algorithms for analyzing speech characteristics
can be found in sections 3.2 and 3.2, respectively.

Speech quality: Speech quality for the pre-training
datasets was evaluated using a self-supervised wav2vec 2.0 ar-
chitecture3 [23] fine-tuned for Mean Opinion Score (MOS) pre-
diction [24]. The open-source baseline, detailed in the paper
[25], refines the pre-trained model by adding an output layer
that aggregates features and trains it using an L1 loss function.
Convergence is ensured by monitoring the MSE between pre-
dicted and target MOS. Training ceases if there is no improve-
ment in MSE for 20 consecutive epochs. The data for fine-
tuning came from main track BVCC dataset [26] of the Voice-
MOS challenge. The dataset includes corresponding MOS rat-
ings collected through a unified listening test. We utilised the
standard training and development splits provided by the chal-
lenge to create our training and validation sets. This approach
ensures that unseen synthesis systems, speakers, texts, and lis-
teners are held out in the development set, while maintaining
similar overall rating distributions across both sets.

Speech characteristics: This paper focuses on analysing
three key speech characteristics: pitch, intensity, and rate. Pitch
refers to the perceived highness or lowness of a sound, and in
speech, it’s primarily determined by vocal fold vibration fre-
quency [27]. To estimate pitch, we employed the CREPE [28]
algorithm, available on PyPI and implemented using Tensor-

3https://github.com/facebookresearch/fairseq/
tree/main/examples/wav2vec
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Figure 2: MOS score distribution for the pre-training datasets:
natural (blue), matched speaker synthetic (magenta), and un-
matched speaker synthetic dataset (green)

Flow, provides a predict function for pitch estimation. We set
the step size hyper-parameter to 30 to set the pitch estima-
tion interval to 30 ms. Additionally, we enabled Viterbi smooth-
ing for the pitch curve by setting the viterbi argument to
True. The default model size, ”full,” was used as recommended
in [28]. The predict function returns three lists: timestamps,
predicted fundamental frequency in Hz, and voicing confidence
i.e. confidence in the presence of a pitch. We only consider
pitches with a confidence score exceeding 75%.

Speech intensity refers to the perceived loudness or strength
of the sound. In this context, it reflects the amount of acoustic
energy produced by the speaker and is typically measured in
decibels (dB). We opted to estimate loudness using Loudness
Units relative to Full Scale (LUFS) [29] and it was performed
using the pyloudnorm [30] library.

Speech rate, also known as speaking rate or tempo, refers
to the speed at which a person speaks. It is typically mea-
sured in Words Per Minute (WPM) by calculating the dura-
tion of speech and dividing it by the number of words spo-
ken. We obtained word counts from the available transcripts
in LibriSpeech dataset [11] and measured audio duration us-
ing librosa.get duration after removing silence at the
beginning and end with librosa.effects.split. This
approach calculates WPM for each speech sample.

Figure 2 compares the MOS distribution of the three
datasets. As in Figure 1, the natural, matched
synthetic and unmatched synthetic datasets are rep-
resented by blue, magenta and green color respectively. The
MOS distribution reveals a potential mismatch between per-
ceived and actual speech quality. While the density plots for
the synthetic datasets appear narrower and taller compared to
natural speech, with most scores concentrated between 3.5 and
4.5, this suggests a higher number of synthetic samples receiv-
ing high quality ratings. However, this observation contradicts
the performance of the APC model, which shows a significant
gap between models trained on natural and synthetic data. This
discrepancy implies that the speech quality model might not be
capturing the nuances that are crucial for the PR task. In other
words, the model might be giving high MOS scores to synthetic
speech samples that lack the natural qualities needed for opti-
mal phoneme recognition.

Figure 3 compares the speech characteristics between nat-
ural and synthetic datasets. Despite using cloned versions of
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Figure 3: Top: Speech characteristics scatter plot for natural
dataset vs matched speaker dataset where dots color indicate
female (red) and male (blue). Bottom: Speech characteristics
(pitch, intensity and speech rate) distributions for natural (blue)
matched synthetic (magenta), unmatched synthetic (green) pre-
training datasets.
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Figure 4: Performance of different augmented data with and
without natural data seed (25 hours) in pre-training

the speakers from the natural dataset in the matched synthetic
dataset, the natural speech exhibits a wider range in both pitch
and intensity. Speech rate, however, appears similar but off-
set across between natural and synthetic datasets, indicating a
lower average speaking rate compared to synthetic speech. In-
terestingly, the matched-speaker data has a high correlation with
natural speech for pitch, yet the natural speech distribution re-
mains broader. This suggests the synthetic data may lack natu-
ral intonation and prosody, leading to less long-term variation in
pitch. Similarly, the intensity distribution for matched synthetic
data is narrower despite a lower correlation with natural speech.
This might indicate limitations in replicating natural emphasis
variations that occurs due to prosody and intonation. The distri-
bution plots further highlight the similarity in speech character-
istics between the matched and unmatched synthetic datasets.
This aligns with their comparable performance observed in the
APC model. The reduced variability in synthetic speech charac-
teristics, particularly pitch and intensity, could potentially con-
tribute to the performance gap between models trained on natu-
ral and synthetic data.

4. Data augmentation with synthetic speech

Pre-training with synthetic speech yielded lower performance
compared to natural speech. Here we investigate the use of
TTS synthetic speech for data augmentation, like for low-
resource scenarios. Ullah et al. [31] explore various aug-
mentation strategies for limited pre-training data scenarios.
They consider a 25-hour subset (Clean25) from Train-
Clean-100 as a low-resource scenario representing the max-
imum natural data available. They then applied speech mod-
ifications like pitch modification, accent augmentation, and
noise addition to the Clean25 data, creating 75 additional
hours. This augmented data was combined with the clean data
to form new datasets (Clean25 + [Pitch], Clean25 +
[Accent], Clean25 + [Noise]). These datasets were
used to pre-train APC models, followed by evaluation on the
same downstream modeling task employed in our experiment.
To evaluate TTS speech augmentation, we created two 100-
hour datasets: Clean25 + [Matched synthetic] and
Clean25 + [Unmatched synthetic]. These datasets
combined the Clean25 baseline data with 75 hours of
matched-speaker and unmatched-speaker synthetic speech data,
respectively. We then used these datasets to pre-train the
APC model, and the results are presented in Figure 4 plotting
phoneme classification accuracy for different pre-training sce-
narios. We compare models pre-trained with 25 and 100 hours
of data, using natural speech (blue), synthetic speech (dashed
green), data augmentation with synthetic speech (solid green),
and other augmentation strategies (red). Pre-training with only
synthetic speech (dashed green) results in the lowest perfor-
mance. Interestingly, data augmentation using synthetic speech
(solid green) outperforms all other augmentation methods (red).
This improvement might be attributed to the introduction of
novel content through synthetic speech augmentation. This
additional variety potentially enriches the phoneme dictionary
learned by the model, leading to better performance.

5. Discussion and Conclusions

Despite recent advancements in TTS models, we show synthetic
speech currently lacks the naturalness needed to fully replace
natural speech for pre-training speech-based models. Even us-
ing cloned TTS voices fail to achieve comparable performance
on a downstream PR task, likely due to reduced variability in
pitch and intensity when compared to natural speech. Addi-
tionally, speech quality metrics do not capture naturalness de-
ficiencies beyond single utterance lengths. Nevertheless, syn-
thetic speech shows promise as a data augmentation strategy
to improve performance for low-resource languages. Future
work should explore the use of diverse downstream tasks to
evaluate TTS systems for long-term speech quality aspects like
prosody and naturalness in extended speech segments, mov-
ing beyond single-utterance quality assessments. Additionally,
merging augmentation methods holds promise. Combining per-
turbations that introduce signal variation with TTS could lever-
age the strengths of both approaches. Perturbations offer di-
verse signal variations, while TTS can add variety through a
wider range of phone and word variety in generated utterance
content. Finally, incorporating different TTS systems into the
training data could be beneficial. This might introduce more
natural speaker variability and potentially improve model per-
formance.



6. Acknowledgements
This research was conducted with the financial support of Xperi
Inc. and Science Foundation Ireland to the Insight Centre for
Data Analytics (12/RC/2289 P2). For the purpose of Open Ac-
cess, the author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this
submission. The authors would also like to thank ISCA and
the organising committees of past Interspeech conferences for
their help and for kindly providing the previous version of this
template.

7. References
[1] V. Pratap, A. Tjandra, B. Shi, P. Tomasello, A. Babu, S. Kundu,

A. Elkahky, Z. Ni, A. Vyas, M. Fazel-Zarandi et al., “Scaling
speech technology to 1,000+ languages,” Journal of Machine
Learning Research, vol. 25, no. 97, pp. 1–52, 2024.

[2] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” in Proceedings of the 40th International Conference
on Machine Learning, 2023, pp. 28 492–28 518.

[3] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech,” in In-
ternational Conference on Machine Learning (ICML). JMLR-
JOURNAL MACHINE LEARNING RESEARCH, 2021.

[4] X. Tan, J. Chen, H. Liu, J. Cong, C. Zhang, Y. Liu, X. Wang,
Y. Leng, Y. Yi, L. He et al., “Naturalspeech: End-to-end text-to-
speech synthesis with human-level quality,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

[5] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and
T.-Y. Liu, “Fastspeech 2: Fast and high-quality end-to-end
text to speech,” in International Conference on Learning
Representations, 2021. [Online]. Available: https://openreview.
net/forum?id=piLPYqxtWuA

[6] D. O’shaughnessy, “Interacting with computers by voice: auto-
matic speech recognition and synthesis,” Proceedings of the IEEE,
vol. 91, no. 9, pp. 1272–1305, 2003.

[7] K. Hashimoto, J. Yamagishi, W. Byrne, S. King, and K. Tokuda,
“An analysis of machine translation and speech synthesis in
speech-to-speech translation system,” in 2011 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2011, pp. 5108–5111.
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