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Abstract
Understanding speech recognition errors, especially those re-
lated to accents, is challenging due to the complexity of the
models and scarcity of data. This paper addresses this issue
by exploring the use of synthetic data to investigate accent-
related variations and their impact on Automatic Speech Recog-
nition (ASR) performance. We synthesise Spanish-accented
English and compare the speech features captured by synthetic
speech with those found in natural speech. We generate speech
with phoneme-level variation using Spanish voice synthesis and
phoneme-to-speech synthesis and then assess ASR sensitivity to
such variations. Our findings show that synthetic data captures
phonemic patterns of Spanish well, suggesting its utility, cou-
pled with ASR, in L1-L2 phonemic difference modelling. In
contrast, phonotactic patterns are not captured to the same ex-
tent by synthetic data. We also show that the variants built from
the synthetic data accurately challenge ASR systems, prompt-
ing a potential method for testing and enhancing ASR accent
robustness and explainability for speech research.
Index Terms: speech synthesis, speech recognition, accents

1. Introduction
It is widely acknowledged that automatic speech recognition
(ASR) systems, although demonstrating high performance in
accurately transcribing standard English, are much less accu-
rate when handling accents outside their training scope [1]. This
accent-related limitation is significant, given the global deploy-
ment of these systems, making accent robustness crucial for the
improvement of ASR systems. The complexity of the architec-
tures results in a lack of understanding of their error patterns
and underlying phonetic phenomena.

While the challenge of ASR explainability has been previ-
ously addressed from different perspectives, it remains unclear
which ASR errors stem directly from accents compared to other
speech features. The scarcity of accented speech data further
impedes ASR accent-robustness testing and enhancement. For
this reason, synthetic data, which offers flexibility and quan-
tity, seems promising for overcoming this challenge. This is the
question we seek to address in this paper.

In this paper, we propose using synthetic data to create
variants to investigate the impact of accent-related variation
on ASR. Our aim is twofold. Firstly, we investigate how
the information captured in synthesised Spanish-accented En-
glish speech compares with existing phonological knowledge
of Spanish-accented English. Secondly, we assess ASR sensi-
tivity to such accent-specific variations. We explore the phono-
logical features captured by synthetic accented speech data us-
ing a text-to-speech (TTS) system to synthesise artificially ac-
cented speech and use the resulting ASR confusions to pro-

duce synthetic variants incorporating targeted, phoneme-level
accent-specific variations.

Our analysis of how ASR copes with both synthetic and nat-
ural accented speech shows that synthetic speech can indeed in-
fer Spanish-English phonemic confusion patterns, demonstrat-
ing that synthetic data can help in language modeling and varia-
tion analysis in under-resourced scenarios, and for ASR accent-
robustness test and improvement. While this research highlights
the potential of synthetic speech in understanding phonemic
confusion patterns, our investigation also reveals that synthetic
speech capture of phonotactic patterns is only partial.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses the related work and Section 3 presents those
aspects of Spanish phonology relevant to the analysis. Section 4
describes our method for the generation of variants and Sec-
tion 5 presents and discusses our results. Section 6 concludes
the paper with some pointers to future work.

2. Related Work
This section reviews relevant literature, focusing on ASR chal-
lenges with accented speech, previous efforts to improve robust-
ness and explainability, and the use of synthetic data in ASR and
speech research more generally.

Improving ASR robustness to accented speech has been a
significant research focus. Solutions such as data augmenta-
tion [2], model adaptation [3], and transfer learning [4] have
been explored to improve ASR robustness to accented speech.
These methods show promise but face limitations, especially
with less common accents, due to the scarcity of accented
speech data and a limited understanding of the learned features
in these systems.

To better understand ASR error patterns, several studies
have investigated linguistic representations in deep neural net-
works [5] and recent ASR systems [6, 7]. While these studies do
not focus on accents, consistent accent-related error patterns in
ASR have been identified for natural data [8]. This, and the fact
that ASR has been used for linguistic studies such as data an-
notation or speech feature analysis [9], suggest that ASR weak-
nesses can be used to retrieve L1-L2 pronunciation differences.
This is the main idea behind our work.

As natural accented speech data can be scarce, particularly
for under-resourced languages, it seems natural to turn to speech
synthesis to augment data. Synthetic data has been used for data
augmentation [10, 11], highlighting its potential for ASR ro-
bustness improvement. Synthetic data also serves as a valuable
tool for ASR testing due to its flexibility. For example, synthetic
speech with word-level variations has been used to test ASR
sensitivity [12]. Instead of word-level variations, we propose
to look at pronunciation variations, and investigate the extent to



Figure 1: The three different configurations used to investigate phonemic confusions.

which we can use synthetic data to infer L1-L2 variations, and
to test ASR systems.

This paper builds on previous findings related to ASR ex-
plainability and explores the use of synthetic speech for lan-
guage differences modeling and ASR testing. Although not the
primary focus of this work, synthetic data has demonstrated its
utility in enhancing ASR systems, suggesting potential appli-
cations of the work presented here for ASR accent-robustness
improvement. In our previous study [13], we leveraged syn-
thetic French-accented speech to build a French-English sim-
ilarity matrix and shown that it captured French-English con-
fusion patterns more accurately than a purely knowledge-based
approach. This study focused on the paradigmatic aspects of an
accent. In our current study, we expand our focus to address
non-native accents at both paradigmatic and syntagmatic levels.

3. Spanish Phonology
An accent refers to a variation in phoneme realisation as op-
posed to a so-called “standard” pronunciation. In the case of
non-native accents, these variations are in great part due to the
differences between the pronunciation rules of the native lan-
guage of the speaker (their L1) and the target language (their
L2). Thus, non-native speakers usually encounter difficulties
producing and perceiving specific segmentals [14] or supraseg-
mentals [15] that are present in the L2 but absent or different
in the L1. Spanish phonology differs from English phonology
in several aspects [16, 17, 18, 19, 20]. Firstly, they have dif-
ferent phoneme sets, resulting in phonemic variations. English
has twenty-four consonants while Spanish has nineteen. Native
speakers of Spanish have difficulty in pronouncing /z/, /v/, /D/.
Also, Spanish has only five pure vowels (/a/, /e/, /i/, /o/, /u/),
whereas English has twelve ([20, 18]).

Secondly, the syllable structure differs considerably be-
tween the two languages, with English showing a much more
diverse range of consonant clusters than Spanish. This leads
to phonotactic variations. In Spanish, syllables generally be-
gin with a single consonant, two consonants or a vowel, and
end similarly. Conversely, in English, syllable can start with
up to three consonants. Additionally, Spanish words end with
a vowel most of the time. As a result, Spanish speakers tend to
add a vowel - usually a realisation of /e/, which is the default
vowel in Spanish - to the beginning of English words with an
initial /s/ consonant cluster (termed sC clusters), for example

pronouncing “estreet” instead of “street”.

4. Accented Speech Data Synthesis
Above we highlighted two types of Spanish variations in En-
glish: phonemic variations which arise when English-but-not-
Spanish (EN-not-ES) phonemes are encountered, and phonotac-
tic variations which occur when pronouncing EN-not-ES con-
sonant clusters independently from phonemic constraints. In
this section, we describe how we leverage synthetic Spanish-
accented English data (synthetic voice) confusions to gener-
ate synthetic variants that capture these variations (synthetic
phonemes / phonotactics). While we address all phonemic
variations, we focus in this paper on a single phonotactic phe-
nomenon, the /e/ epenthesis before sC clusters.

4.1. Experimental Setup

We choose to use L2-Arctic [21] for our experiments. L2-Arctic
is a speech corpus of non-native English which contains record-
ings from twenty-four non-native speakers of English, including
Spanish speakers of English. For our experiments, we use the
L2-Arctic Spanish-English utterances, which consist of 4401
recordings of four Spanish natives - two males and two females
- reading English prompts from CMU’s ARCTIC 1, with the
corresponding phonetic transcriptions.

For speech recognition, we use the wav2vec 2.0 [22]
base model 2, fine-tuned and pretrained on 960 hours of Lib-
rispeech [23] for speech recognition. In addition, we also
use for phoneme recognition the wav2vec2Phoneme [24] base
model 3, which is base wav2vec2 fine-tuned on Common-
Voice [25] to recognise phonemes. Finally, we use the Mi-
crosoft Azure TTS 4 for speech synthesis. This choice is moti-
vated by the fact that this TTS system accepts both English and
non-English phonemes as input.

4.2. Generation of Speech with Phonemic Variations

Before assessing the ASR, we generate English speech with
Spanish phonemic variations using two different methods. The

1http://festvox.org/cmu arctic/
2https://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft
4https://learn.microsoft.com/en-us/azure/cognitive-services/speech-

service/text-to-speech



(a) Natural non-native speech dendrogram. (b) Synthetic voice speech dendrogram. (c) Synthetic phonemes speech dendrogram.

Figure 2: Hierarchical view of the ASR confusions for some target consonants.

first method consists of providing the English text utterances
from L2-Arctic Spanish to the TTS system configured to syn-
thesise Spanish. So we input the English text in Azure TTS
with its parameter “voice” set to Spanish, resulting in English
text read as if it was written in Spanish. This method is in-
tended to represent the worst case scenario, where a Spanish
native speaker encounters English for the first time. Thus, we
are building on the generation bias to gain insight into the infor-
mation captured by the TTS and whether it relates to expected
Spanish patterns in English. This pipeline is denoted synthetic
voice and is illustrated in the second box on Figure 1.

Then, we input the synthetic voice speech to the ASR and
compute the confusion matrix of the transcribed phonemes. In
order to verify that synthetic accented speech can be used to
produce variants that challenge the ASR, we use this confu-
sion matrix as a similarity measure for the second generation
method. This synthetic similarity matrix is expected to have
captured the phonemic variations of Spanish English and is used
in the second method, called synthetic phonemes. This method
is illustrated in the third box on Figure 1. It consists of replac-
ing the EN-not-ES phonemes by their closest neighbour in the
synthetic similarity matrix. First, we use a Spanish-to-English
phonemic mapping to identify the EN-not-ES phonemes to be
replaced. Then, the replacing phonemes are chosen from the
synthetic similarity matrix and the EN-not-ES phonemes are
varied, i.e. replaced by the chosen ones. The Azure TTS is used
as a phoneme-to-speech system to generate the varied speech
directly from the varied phoneme sequence.

In order to investigate the phonotactic confusion patterns
of Spanish English, we filter the sentences from the above men-
tioned natural and synthetic voice speech data which contain sC
clusters. As a counterpart to synthetic phonemes, we produce a
synthetic phonotactic set, which consists of speech synthesised
after adding /e/ before sC clusters in the phoneme sequences.

5. Results
5.1. Phonemic Confusions

Figure 3: Alignment of an L2-Arctic speech sample. Phonemic
confusions are annotated in black, phonotactic ones in grey.

For the purpose of investigating the extent to which syn-
thetic speech can be used to model non-native confusion pat-
terns, and to generate variants for ASR robustness assessment,
we run the ASR on all three audio sets described in Section 4.2
and illustrated by the shaded areas in Figure 1:

• natural Spanish-English from L2-Arctic as baseline;
• synthetic voice speech for L1-L2 confusions modelling;
• synthetic phonemes speech as variants for ASR testing.
The reference phonemes and transcription from wav2vec 2.0
are force-aligned (see Figure 3 for illustration on a natural sam-
ple) and the confusions matrices are computed. We visualise the
confusions obtained for each set as similarity hierarchies using
the Ward clustering method [26]. Figure 2 shows excerpts of
these hierarchies, corresponding to each of the three sets. 5.
These hierarchies highlight interesting clusters (cf. Section 3),
such as [/s/,/z/], present in synthetic phonemes confusions as
well as in natural Spanish confusions. Similarly, the specifi-
cally Spanish confusion [/b/,/v/] is present in all three sets. The
phonemes /D/, /T/, /t/, /d/ and /R/ are clustered differently across
the three sets, but some pattern still emerges with /D/ and /R/,
which are EN-not-ES phonemes, being often confused with and
thus regarded as similar to one of the remaining /T/, /t/ and /d/.

The fact that in synthetic phonemes we retrieve Spanish pro-
nunciation patterns suggests that synthetic voice accurately cap-
tures the pronunciation patterns of Spanish, and that the ASR is
sensitive to phoneme-level variations. In the next subsection,
we investigate the extent to which we can capture phonotactic
differences with synthetic speech.

5.2. Phonotactic Confusions

Again, we run the ASR on the three filtered sets containing
sentences with sC clusters. First, we compute the transcribed
epenthesis rate, that is the percentage of sC clusters transcribed
as vowel + sC cluster by the ASR. In order to have a better
understanding of the patterns underlying the recognition of the
epenthesis by the ASR, we looked at the last phoneme of the
word preceding words with initial sC. Indeed, the sequence of
final consonant cluster followed by initial consonant cluster is
more problematic for Spanish speakers than the sequence fi-
nal vowel followed by initial consonant cluster, and induces
epenthesis more often. Table 1 shows rates of epenthesis recog-
nition relative to the number of corresponding sequences. The
two sequences we examine are: 1) when the previous word ends
with a consonant, denoted C sC, and 2) when the previous word
ends with a vowel, denoted V sC. As expected, the epenthesis
is recognised more often in the case of previous consonant than
previous vowel. This table also reveals that synthetic phono-
tactic results in more epenthesis being recognised after a vowel
than the other methods. That can be explained by the fact that
we manually added a /e/, indiscriminately to the previous word,
while the human speakers are less likely to epenthesise an /e/
when a vowel is already present.

It can be noted that only a few of the original sentences

5Full confusion matrices and hierarchies can be found
at https://tinyurl.com/results-phonemic



Figure 4: Capture rate of epenthesis before sC clusters for different preceding phonemes.

Table 1: Transcribed epenthesis rate for vowel versus
consonant-preceding sC clusters.

Cluster Natural Syn.Voice Var.Pho.

epenthesis C sC 15.2% 18% 15.2%
V sC 0.9% 2.4% 7.3%

where transcribed with an epenthesis. To explore the context in
which the epenthesis is recognised, we look into the details of
the consonant preceding sC. Figure 4 illustrates emerging rate in
the ASR of the epenthesis for the three types of speech and for
each preceding consonant. Interestingly, preceding /s/ does not
appear to result in much epenthesis by Spanish native speakers.
That can be explained, as well as the low rate of epenthesis in
the natural set, by a hyper-articulation of the difficult sequence
[C+sC] that we have confirmed by listening to the natural sam-
ples. Another interesting pattern lies in the 100% capture rate
of the epenthesis in the case of preceding /T/ or /m/ for synthetic
voice speech. There are only 16 utterances of [m s C] in the
data, and 8 utterances of [Ts C], compared to 87 utterances of [d
s C] for which the epenthesis was recognised only once.

It is also interesting to note that synthetic voice and syn-
thetic phonotactic do not follow the same tendencies, suggest-
ing that the /e/-to-speech from the phoneme-to-speech system
also depends on the voice parameter used, and therefore on
the pronunciation modelling of the system. Indeed, a human
investigation of 100 samples of synthetic phonotactic revealed
that only 56% of the epenthesis were synthesised, and the ASR
recognised an epenthesis in 21% of the cases. This reveals a
weakness of the TTS, and a relative ability of the ASR to cor-
rect this pronunciation pattern.

6. Conclusion and Future Work
In this study, we leveraged TTS generation bias and ASR weak-
nesses to model non-native confusion. Using these confusions,
we created synthetic artificially accented speech data to explore
pronunciation patterns of Spanish-accented English. Deploying
speech recognition systems on a global scale requires improv-
ing the robustness of ASR to different accents to ensure fairness
across users of different linguistic backgrounds. In this perspec-
tive, this sort of investigation into the error patterns of ASR sys-
tems, which reveals a lot about how pronunciation variations are
handled, can be very useful. Indeed, our use of synthetic data
as a way of systematically analysing the impact of controlled
speech variations can be of help 1) as a tool for speech research,
2) to understand ASR learning processes, and 3) for training and

fine-tuning ASR.

Firstly, as speech data is time consuming and expensive to
obtain and annotate, the work presented here could be of aid
for linguistic studies. The comparison of phonemic confusion
patterns between synthetic and natural speech suggests that syn-
thetic speech can be used to infer L1-L2 phonemic differences,
supporting our earlier findings on French [13]. This implies
that synthetic data, coupled with ASR, can be used as a mean
to model linguistic differences between languages, and aid lan-
guage modeling and variation analysis, particularly in under-
resourced scenarios. It can be envisaged, then, to train TTS
L1-voices on a few unlabelled L1 data to synthesise L2 speech
as in synthetic voice, and leverage the weaknesses of an ASR to
infer L1-L2 differences.

Secondly, we show that these confusion patterns can be
used to build variants that accurately challenge ASR systems.
From an explainable AI perspective, our approach enables
clearer attribution of ASR errors to specific variations in speech.
By systematically introducing specific accent-related phonemic
variations to speech samples, we can precisely study the im-
pact of these variations on ASR performance, offering a flex-
ible, language-independent and reproducible way to test ASR
accent-robustness. This helps identify potential biases in the
learning process, and provides insights into the learning pro-
cesses and speech representation of ASR systems, showing how
different phonetic and phonological features are processed and
where the system might be failing.

And finally, from a software engineering perspective, the
analysis of the system’s errors can help improve the perfor-
mance of ASR. In giving insight into the phonetic variations
that cause ASR errors, our method can help design approaches
to improve ASR robustness to such variations. Additional train-
ing material could be collected, or synthesised, to correct these
specific lacks in the original training set. Thus, our variants
have applications for the test, development and improvement of
ASR towards accent-robust systems.

On the other hand, our investigation into a phonotactic pat-
tern reveals a very partial capture in synthetic speech, partic-
ularly compared to phonemic variations, indicating a potential
weakness of the TTS for this purpose, and a need for further
study. The main limitations of our work include the choice of
TTS, ASR, language, and data. The force alignment we use has
also shown weaknesses. Future work will address these lim-
itations, as well as further investigate phonotactic patterns in
synthetic speech.
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