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Abstract
It is an open challenge to obtain high quality training data, espe-
cially captions, for text-to-audio models. Although prior meth-
ods have leveraged text-only language models to augment and
improve captions, such methods have limitations related to scale
and coherence between audio and captions. In this work, we
propose an audio captioning pipeline that uses an audio lan-
guage model to synthesize accurate and diverse captions for
audio at scale. We leverage this pipeline to produce a dataset
of synthetic captions for AudioSet, named AF-AudioSet, and
then evaluate the benefit of pre-training text-to-audio models
on these synthetic captions. Through systematic evaluations on
AudioCaps and MusicCaps, we find leveraging our pipeline and
synthetic captions leads to significant improvements on audio
generation quality, achieving a new state-of-the-art.
Index Terms: Text-to-Audio, Text-to-Music, Audio Captioning.

1. Introduction
There has been great progress in generative models that generate
audio given text descriptions. These models are called text-to-
audio (TTA) models [1, 2, 3, 4, 5], and have great potential in a
wide range of tasks such as music composition, interactive art,
media creation, and education. They also play a critical role in
building general purpose multimodal models and agents that can
understand and simulate the world in multiple modalities.

Training large-scale text-to-audio models, however, is very
challenging. In contrast to the text-to-image domain where
there are millions of high-quality samples available [6], there are
much fewer high-quality training samples (i.e. audio and caption
pairs) in the text-to-audio domain. 1 Meanwhile, the benefits
of scaling both compute and data, especially during the pre-
training phase, have been emphasized in recent research [7, 8, 9].
In consonance with these findings, this paper shows that pre-
training on high quality datasets, even if they are synthetic, can
drastically improve the quality of text-to-audio models.

In order to create a large dataset for pre-training, prior
methods either transform tags and labels into natural language
[10, 11], or augment audio and captions through mixing and
concatenation [2, 3]. These approaches are limited because they
require transforming pre-existing metadata, which can be of low
quality and result in inconsistencies between the transformed
metadata and the audio.

In this paper, we propose an alternative approach to obtain
high quality audio captions that can be produced at scale and

∗Equal contribution.
1Public datasets contain about 0.5K hours of audio and about 100K

captions. It is challenging to train large-scale models on these data.

that are based on the audio content. Our approach uses a pre-
trained audio language model to automatically caption audio in
the wild. Our approach does not require annotation nor metadata
associated with audio and, as such, it can be easily scaled-up.

Automatically captioning audios in the wild, however, has
several major challenges. First, the audio language model needs
to generalize well to a wide range of audio contents. Second,
the generated captions need to be diverse. Finally, given the
variability in the quality of generated captions, a mechanism is
needed to rank and filter generated captions. We address the first
challenge by adopting the recently proposed Audio Flamingo
chat model [12] trained on diverse dialogues. We ensure that
the captions are diverse by generating captions on the diverse
AudioSet dataset [13]. Last, to promote the accuracy of the gen-
erated captions, we filter them based on their CLAP similarities
with the corresponding audios [14]. With these strategies in
place, we are able to generate a large, diverse and high quality
dataset of synthetic captions called AF-AudioSet.

We use text-to-audio (AudioCaps [15]) and text-to-music
(MusicCaps [5]) benchmarks to evaluate the benefits of using
our method and synthetic captions dataset during pre-training.
We systematically study different data filtering and combination
strategies, model sizes, as well as commonly used architectural
designs based on Tango [3]. We find the optimal pre-training
recipes to be consistent across many settings, and with these
recipes, we are able to achieve the state-of-the-art audio genera-
tion quality on both benchmarks. To the best of our knowledge,
this is the first systematic study to create large-scale high-quality
synthetic captions using audio language models and verify their
effectiveness in improving text-to-audio models. 2

In summary, our contributions are as follows:
• We propose a data labeling pipeline to generate large-scale

high-quality synthetic captions for audio.
• We introduce AF-AudioSet: a large, diverse, and high-

quality synthetic caption dataset produced with our pipeline.
• We obtain state-of-the-art models on text-to-audio and text-to-

music through pre-training on AF-AudioSet, and conduct
systematic study across a variety of settings.

2. Related work
2.1. Diffusion-based Text-to-Audio Generation

The research community has made significant progress in
diffusion-based [16, 17] text-to-audio generation models, with

2AF-AudioSet: https://github.com/NVIDIA/audio-flamingo/
blob/main/labeling_machine. Demos: https://huggingface.
co/spaces/declare-lab/Tango-AF; https://huggingface.co/
spaces/declare-lab/Tango-Music-AF. Checkpoints: https://
huggingface.co/declare-lab/tango-af-ac-ft-ac; https://
huggingface.co/declare-lab/tango-music-af-ft-mc.



recent examples including AudioLDM [1, 18], Make-An-Audio
[2], and Tango [3, 19]. These models use a pre-trained text
encoder (e.g., CLAP [20, 14], T5 [21], or FLAN-T5 [22]) to ob-
tain text embeddings, and a pre-trained variational autoencoder
(VAE) [23] to obtain latent features of audio. Similar to latent
diffusion models (LDM) [17], the diffusion decoder is trained
to generate the audio latent features conditioned on the text em-
beddings. The generated latent is decoded to a mel spectrogram
representation using the VAE, followed by a neural vocoder
[24, 25] that converts the mel spectrogram into waveform.

2.2. Training Data Augmentation

Obtaining diverse, large-scale, and high-quality training data,
specially captions, is one of the major challenges in training high-
quality text-to-audio models. Especially, a very limited amount
of accurate audio-caption pairs are available. Conversely, it is
possible to leverage human annotators to produce high quality
captions such as AudioCaps [15] and MusicCaps [5]. However,
such datasets are very small, e.g. less than 10,000 samples,
making it challenging to train large text-to-audio models.

The current main approach to augment audio captions is
to use a large language model to rephrase tags and labels into
short captions [10]. While this approach can scale-up captions
to some extent, it is limited by the existence and quality of the
metadata. Other approaches focus on augmenting the audio data
by concatenating or mixing two samples to form new samples[1,
2, 3]. Though these methods can improve concept-composition
capabilities, combining captions is a non-trivial task given that
the combination of sounds can result in different captions. 3

In this paper, we introduce an alternative approach where we
label audio based on an audio language model. Our approach can
generate high-quality captions as it listens to the audio contents,
and can be scaled-up as it does not require any metadata to be
provided. We generate over 600K diverse captions on AudioSet,
and find that it can effectively enhance the generation quality of
text-to-audio models. To the best of our knowledge, this is the
first study that uses an audio language model to create synthetic
captions and use them to train and improve text-to-audio models.

2.3. Audio Captioning Models

There are several audio-language models that can generate audio
captions: Pengi [26], LTU [27], Qwen-Audio [28], Salmonn
[29], and Audio Flamingo [12]. They use different methods to
extract audio features and integrate these features into a large
language model. Qwen-Audio and Salmonn are more focused
on speech related tasks, while Pengi, LTU, and Audio Flamingo
are more focused on non-speech audio understanding. Audio
Flamingo in addition provides a chat model trained on diverse
dialogues, which can generate more natural and diverse descrip-
tions. Therefore, we use this model in our data synthesis pipeline.

3. Method and Experimental Setup
In this section, we introduce our captioning method and the
large-scale synthetic dataset which we call AF-AudioSet. We
also introduce our text-to-audio pretraining and finetuning setup.

3.1. Generating AF-AudioSet

We use Audio Flamingo [12] to generate captions for audio in
the unbalanced training set of AudioSet [13]. Audio Flamingo

3Imagine captions for the sounds of racing cars and people screaming
with and without the sound of gun shots.

Table 1: Number of captions and audio in AF-AudioSet avail-
able at different τ , the CLAP similarity threshold.

τ 35% 40% 45% 50%
# Captions 696, 079 366, 018 164, 756 61, 225
# Audios 331, 421 188, 537 91, 923 37, 220
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Number of audio samples for top-20 sound types in AF-AudioSet

Figure 1: Distribution of sound types in AF-AudioSet.

has two series of models. The foundation model is trained on a
number of benchmarking datasets including captioning, question-
answering, and classification. The chat model is further finetuned
on dialogues with more diverse questions and instructions. We
investigated both models and found that the synthetic captions
from the chat model are more natural and diverse, and therefore
decided to use the chat model. Specifically, we prompt the
model with the following instruction: “Can you briefly describe
what you hear in this audio?”. During inference, we generate
20 captions per audio by sampling Audio Flamingo with top-
k = 50 and top-p = 95%.

Given that there is variation in the quality of the generated
captions and that we want to promote captions with higher qual-
ity, we use the CLAP similarity [14] between the caption and the
audio to rank and filter the synthetic captions. The similarity is
computed as cos (vtext,vaudio), where vtext is the CLAP text
embedding and vaudio is the CLAP audio embedding. We then
store the Top-3 most correlated captions for each audio, and
remove captions whose cosine similarities are < 35%. We call
the filtered synthetic caption dataset AF-AudioSet. In Table
1 we demonstrate the number of captions and audio available
at different CLAP similarity thresholds. We demonstrate the
distribution of sound types in Figure 1.

3.2. Text-to-Audio Setup

To systematically study the effect of pretraining text-to-audio
models on AF-AudioSet, we use the Tango model [3] with a
variety of experimental choices. Tango has three major compo-
nents: a frozen audio VAE from AudioLDM [1], the FLAN-T5
text encoder [22], and a latent diffusion model that models the
latent space of the audio VAE and is conditioned on the text
embeddings. The HiFi-GAN vocoder [24] then turns generated
mel spectrogram into waveform.

Model size. We consider three model sizes: small, medium,
and large, each with different number of channels. The medium
one is the same as [3] with 866M parameters. The large one
has 1.93B parameters, and the small one has 217M parameters.
Following [1], we also investigate replacing the FLAN-T5 text
encoder [22] with the CLAP text encoder [14], followed by
FiLM [30] conditioning layers – which we call Tango-CLAP.

Pretraining dataset. We stufy subsets of AF-AudioSet
with the four CLAP thresholds τ shown in Table 1. By changing
τ values we can investigate the trade-off between size and quality
in our synthetic data. We also use the same audio captioning
pipeline to generate additional captions for AudioCaps – which
can be seen as data augmentation – and investigate the effect of



pretraining on this augmented dataset. Finally, we investigate
mixing synthetic and real data during pretraining.

Tasks. We run experiments on both text-to-audio on Au-
dioCaps [15] and text-to-music on MusicCaps [5]. Specifically,
we finetune (pretrained or non-pretrained) Tango models on the
train split of either dataset, and run evaluation on their test split.

Metrics. We report the Frechet Distance (FD) [31], Frechet
Audio Distance (FAD) [32], Inception Score (IS) [33] with
PANNs audio classifier backbone [34], and CLAP similarity
[14] with the 630k-best checkpoint. 4

Training Setup. In all experiments, we use 8 A100 GPUs to
train the models. We pretrain with a batchsize of 128 for 100K
iterations, and finetune with a batchsize of 48 for 40 epochs. The
optimization method follows Tango [3].

4. Experiments
In this section, we aim to answer the following questions: 1)
Does pretraining on AF-AudioSet improve generation qual-
ity? 2) What is the optimal quality-size trade-off (i.e., τ )? 3)
What are the best recipes for different, text encoders, model
sizes, and downstream tasks? 4) Does mixing synthetic and real
captions during pretraining improve generation quality?

4.1. Pretraining Leads to SOTA Text-to-Audio Quality

Our text-to-audio results on AudioCaps are shown in Table 2.
Tango-FT-AC refers to the baseline Tango without pretraining,
and Tango-Full-FT-AC refers to the one pretrained on Tango-
PromptBank [3]. Tango-AF-FT-AC refers to Tango pre-trained
on AF-AudioSet (τ = 0.45), and Tango-AF&AC-FT-AC
refers to Tango pre-trained on AF-AudioSet (τ = 0.45) +
AudioCaps. After pretraining, these models are finetuned on Au-
dioCaps. We find that pretraining on AF-AudioSet leads to a
systematic improvement over the Tango baseline, especially in IS.
We also find that pretraining on AF-AudioSet + AudioCaps
results in further improvements, especially in FD. Positively, our
best results also outperform recent state-of-the-art results.

The text-to-music results on MusicCaps are shown in Ta-
ble 3. Tango-FT-MC refers to the baseline Tango without pre-
training, and Tango-Full-FT-MC refers to the one pretrained on
TangoPromptBank [3]. TangoMusic-AF-FT-MC refers to Tango
pre-trained on AF-AudioSet (τ = 0.35). All models are then
finetuned on MusicCaps. After pretraining on AF-AudioSet,
the model significantly improves on all metrics and outperforms
recent state-of-the-art baselines.

We summarize the results as the major finding of this paper:

Pretraining Tango on AF-AudioSet can lead to state-of-the-
art text-to-audio and text-to-music generation quality.

4.2. Trade-off between Synthetic Captions Quality and Size

The CLAP threshold τ controls the trade-off between caption
quality and data size in AF-AudioSet. A larger τ leads to a
smaller subset (see Table 1) but the remaining captions are more
correlated to the audio given CLAP as a similarity score. In
Figures 2 and 3, we plot the evaluation metrics on AudioCaps
and MusicCaps with different τ and using the medium-sized
Tango. On AudioCaps, τ = 0.45 leads to the best results and
significantly outperforms the baseline Tango without pretraining.
The results monotonically improve as τ increases from 0.35 to

4AudioLDM [1] suggested that FD is preferred over FAD as FD uses
a higher quality audio classifier (PANNs) [34].

Table 2: Evaluation results on AudioCaps. Pretraining on
AF-AudioSet (Tango-AF-FT-AC) leads to consistent improve-
ment over the non-pretrained one (Tango-FT-AC). Pretraining
on a mix of AF-AudioSet and AudioCaps (Tango-AF&AC-FT-
AC) further improves and leads to SOTA text-to-audio generation
quality. † indicates the numbers are taken from their original
papers. ‡ indicates the numbers are taken from [19].

Model FD ↓ CLAP ↑ IS ↑
AudioLDM-L-Full [1] 23.31† - -
Make-an-Audio [2] 18.32† 0.454 7.29†

CoDi [35] 22.90† - 8.77†

ConsistencyTTA [36] 20.97† 0.496 8.88†

Auffusion [37] 21.99† 0.539 10.57†

Tango-FT-AC [3] 19.84 0.500 9.06
Tango-Full-FT-AC [3] 18.93† 0.539‡ 7.86‡

Tango-AF-FT-AC 19.06 0.503 10.87
Tango-AF&AC-FT-AC 17.19 0.527 11.04

Table 3: Evaluation results on MusicCaps. Pretraining on
AF-AudioSet (TangoMusic-AF-FT-MC) significantly outper-
forms the non-pretrained one (Tango-FT-MC) and leads to SOTA
text-to-music generation quality.

Model FD ↓ FAD ↓ IS ↑
MusicGen (medium) [38] 35.52 5.02 1.94
AudioLDM-2 [18] 22.08 3.83 2.17
Tango-FT-MC 47.47 7.88 1.85
Tango-Full-FT-MC 38.19 6.83 2.71
TangoMusic-AF-FT-MC 21.84 1.99 2.21

0.45, However, there is result degradation when τ changes from
0.45 to 0.5, indicating the subset with τ = 0.5 may be too small
for pretraining. On MusicCaps, as τ increases, FD and FAD be-
come slightly worse while IS becomes slightly better. However,
the differences are small, and all results are significantly better
than the baseline Tango model without pretraining. We think
that τ = 0.35 leads to the best generation quality as it has the
best FD and FAD. We summarize the recipes below:

τ = 0.45 leads to the best results on AudioCaps.
τ = 0.35 leads to the best results on MusicCaps.

4.3. AF-AudioSet versus TangoPromptBank

We also investigate pretraining on TangoPromptBank [3] – a col-
lected pretraining set with more than 1M samples – and fintune
on both benchmarks. The resulting models are called Tango-
Full-FT-AC(or MC), and results are in Tables 2 and 3. We
find pretraining on AF-AudioSet (Tango-AF-∗) can match
the generation quality as pretraining on TangoPromptBank on
AudioCaps and significantly outperforms it on MusicCaps. The
results indicate that AF-AudioSet has high quality captions,
and pretraining on this smaller yet higher quality set can lead to
similar or better results. We summarize our findings below:

Pretraining on high-quality datasets, even if they are synthetic
and smaller, can lead to similar or better generation quality.

4.4. The Effect of Text Encoder and Tango Size

We investigate the optimal filtering threshold τ for Tango-CLAP,
where we replace the FLAN-T5 text encoder with CLAP. The
results in Figure 4 are very similar to Tango and the best results
occur at τ = 0.45.
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Figure 2: Evaluation results on AudioCaps with different CLAP thresholds of AF-AudioSet. The model is Tango (medium) finetuned
on AudioCaps. τ = 0.45 leads to the best results overall and significant improvements over the non-pretrained one.

Tango (pretrained on AF-AudioSet) Tango (not pretrained)

0.35 0.4 0.45 0.5
20

30

40

50

τ

FD
↓

0.35 0.4 0.45 0.5

2
4
6
8

τ

FA
D
↓

0.35 0.4 0.45 0.5
1.5

2

2.5

3

τ

IS
↑

Figure 3: Evaluation results on MusicCaps with different CLAP thresholds of AF-AudioSet. The model is Tango (medium) finetuned
on MusicCaps. τ = 0.35 leads to the best FD and FAD and significant improvements over the non-pretrained one.
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Figure 4: Evaluation results on AudioCaps with different CLAP
thresholds of AF-AudioSet. The model is Tango-CLAP
(medium) finetuned on AudioCaps. The results are similar to
Tango in Figure 2.

We then study the effect of our synthetic data on different
Tango model sizes: small, medium, and large, and compare
the results with and without pretraining. Figures 5 and 6 show
results on AudioCaps and MusicCaps. For all sizes, pretraining
leads to significant improvements, indicating that pretraining on
AF-AudioSet is a efficient and versatile strategy to improve
audio generation quality. We summarize our the findings below:

The recipes and conclusions in Section 4.2 also apply to other
model conditioning architectures and model sizes.

4.5. The Effect of Mixed pretraining Sets

Finally, we study the effect of several mixed pretraining sets,
where we combine synthetic and real captions during pretraining.
First, we look at combining AF-AudioSet and AudioCaps.
The results are in Table 2, with model name Tango-AF&AC-
FT-AC. The results show that combining both datasets during
pretraining improves generation quality. Then, we look at aug-
menting AudioCaps with synthetic captions generated with our
pipeline described in Section 3. The results for this setting are:
FD= 19.59, CLAP= 0.507, and IS= 9.85. The results show
that simply augmenting AudioCaps leads to consistently better
generation quality. We summarize our findings below:

Combining synthetic and real data during pretraining can lead
to further improvements on generation quality.

small medium large

20

23
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Tango (pretrained on AF-AudioSet)
Tango (not pretrained)

Figure 5: Evaluation results on AudioCaps with different model
sizes. The model is Tango pre-trained on AF-AudioSet with
τ = 0.45 and finetuned on AudioCaps. The improvement by
pretraining is clear across all model sizes.
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Figure 6: Evaluation results on MusicCaps with different model
sizes. The model is Tango pre-trained on AF-AudioSet with
τ = 0.35 and finetuned on MusicCaps. The improvement by
pretraining is clear across all model sizes.

5. Discussion
We expect that the quality of synthetic captions will improve,
as audio language models become larger and more powerful –
including audio captioning models and contrastive audio-text
embeddings. An important future direction is to investigate a
better synthesis pipeline to further improve diversity and accu-
racy of synthetic captions. Another important future direction is
to investigate better pretraining strategies.
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and A. Défossez, “Simple and controllable music generation,” Ad-
vances in Neural Information Processing Systems, vol. 36, 2024.


	 Introduction
	 Related work
	 Diffusion-based Text-to-Audio Generation
	 Training Data Augmentation
	 Audio Captioning Models

	 Method and Experimental Setup
	 Generating AF-AudioSet
	 Text-to-Audio Setup

	 Experiments
	 Pretraining Leads to SOTA Text-to-Audio Quality
	 Trade-off between Synthetic Captions Quality and Size
	 AF-AudioSet versus TangoPromptBank
	 The Effect of Text Encoder and Tango Size
	 The Effect of Mixed pretraining Sets

	 Discussion
	 References

