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Abstract
Spoken semantic parsing (SSP) involves generating

machine-comprehensible parses from input speech. Training
robust models for existing application domains represented in
training data or extending to new domains requires correspond-
ing triplets of speech-transcript-semantic parse data, which are
expensive to obtain. In this paper, we address this challenge by
examining methods that can use transcript-semantic parse data
(unpaired text) without the corresponding speech. First, when
unpaired text is drawn from existing textual corpora, Joint Au-
dio Text (JAT) and Text-to-Speech (TTS) are compared as ways
to generate speech representations for unpaired text. Experi-
ments on the STOP dataset show that unpaired text from exist-
ing and new domains improves performance by 2% and 30% in
absolute Exact Match (EM) respectively. Second, we consider
the setting when unpaired text is not available in existing tex-
tual corpora. We propose prompting Large Language Models
(LLMs) to generate unpaired text for existing and new domains.
Experiments show that examples and words that cooccur with
intents can be used to generate unpaired text with Llama 2.0.
Using the generated text with JAT and TTS for spoken semantic
parsing improves EM on STOP by 1.4% and 2.6% absolute for
existing and new domains, respectively.
Index Terms: spoken language understanding, on-device, un-
paired data,large language models, prompting

1. Introduction
Spoken Language Understanding (SLU) is essential for many
real-world applications today, including conversational agents
and virtual assistants. Spoken Semantic Parsing (SSP) is the
SLU task that involves transforming a recording to a machine-
comprehensible parse tree [1]. End-to-end models [2] operate
directly on speech while cascade models [3] generate a seman-
tic parse based on the speech transcript. Two-pass deliberation
models [4] combine the best of both worlds, using first-pass
transcripts and speech embeddings to perform spoken seman-
tic parsing within a second pass. However, training such mod-
els with supervision requires matched triplets of speech, tran-
script, and semantic parse. Annotating these triplets is expen-
sive, which limits the size of training data and, consequently,
model performance.

The need for matched data can be alleviated by develop-
ing methods that can use unpaired text-only data. Text data
(transcript-semantic parse) is more easily obtained than speech
– either from existing textual corpora or by prompting Large
Language Models (LLMs), and training models with a small
amount of paired speech-text data and a large amount of un-
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paired text is useful. It is nontrivial to incorporate text-only
data into end-to-end models because model output cannot be
obtained without speech input. Prior work has explored the use
of text data for speech recognition [5–7]. External language
models trained in text can be used to interpolate token predic-
tion probabilities [8], but require additional memory, making
them unsuitable for on-device applications. Coordinated learn-
ing methods [9, 10] project speech and text to a shared em-
bedding space for speech recognition, but such models require
significant amounts of paired speech-text data to learn robust
mappings. The final class of work generates speech represen-
tations for unpaired speech - Joint Audio Text (JAT) [11] uses
mean speech embeddings from paired data to represent unpaired
text. This is computationally inexpensive, but the speech em-
beddings do not contain information embedded in real speech.
In contrast, synthetic speech from Text-to-Speech (TTS) mod-
els [5] produces informative speech representations but can be
computationally expensive.

There are two cases where additional textual data may be
acquired for semantic parsing, (a) to improve models on exist-
ing domains (ED) and (b) to support new domains (ND). In this
paper, we compare JAT and TTS for SSP when unpaired text
data is drawn from these two setups - ED and ND.

When unpaired text is not available from existing corpora,
we propose to prompt Large Language Models (LLMs) [12–
14] to generate textual data for SSP. LLMs have been used in
prior work to generate synthetic data for text classification us-
ing approaches such as Self-Instruct [15], AttrPrompt [16],
ZeroGen [17], and more recently use in-context learning with
seed samples [18]. Semantic parsing requires sequence label-
ing, i.e., (a) it requires the correct identification of the number
and identity of intent and slot tags, and (b) the correct placement
of entity and slot tags to form the right parse tree, all while not
inserting unrelated or unseen intent and slot tags. Therefore,
generating useful and diverse data for semantic parsing is more
complex than other classification tasks.

Prior work [19] has proposed the use of template-based
masked training of BART to produce additional variants for
masked words; however, this limits the potential lexical diver-
sity of the generated data, and requires a significant amount of
labeled data, which may not be available for the ND setting.
Since LLMs can learn in context and generalize better in few-
shot settings, they need fewer exemplars to generate diverse and
high-quality synthetic data for semantic parsing. This paper ad-
dresses the task of generating synthetic text data for semantic
parsing by using different prompting approaches with Llama 2.

For the ED setup, it is sufficient to generate transcripts (sim-
ilar utterances ) since semantic parses can be obtained from
transcripts using pre-trained semantic parsers. We describe two
prompting methods: (a) intent-word-based prompting (IWP),



where the LLM produces transcripts corresponding to a partic-
ular intent class and containing words that co-occur with the in-
tent, and (b) exemplar-based prompting (EP), where it generates
transcripts that are similar to provided examples. We generate
pseudo-labels for the generated utterances using a pre-trained
RoBERTa [20] model and train SSP models using JAT. We find
that EP is simpler but IWP generates the desired intent more of-
ten. Using data from both methods improves the Exact Match
(EM) on STOP data by 1.4 points absolute.

Figure 1: This paper: We describe ways to unpaired text to train
deliberation models, where unpaired data can be obtained from
LLMs or existing textual corpora. We use JAT or TTS to obtain
speech representations of unpaired data

For the ND setup, pre-trained models for pseudo-labeling
are unavailable for the new domain(s), and hence LLMs are
used to generate the seqlogical form (containing the transcript
with intent and slot tags annotated) of semantic parses directly.
The transcript is then inferred from the seqlogical form of the
semantic parse. Exemplar-based prompting (EP) is used with 3
real examples for every possible intent-slot combination to gen-
erate large-scale data. We find that the generated data improves
EM by 2.3 points absolute over a baseline that uses only 3 ex-
amples per combination.

2. Deliberation Model for SLU
Deliberation-based SLU models [4, 21] are two-pass models
that predict an ASR transcript in the first pass. Using the first
pass transcript and audio, it then generates the semantic parse in
the second pass. In contrast to cascade models that utilize sep-
arately trained Automatic Speech Recognition (ASR) and SLU
components, a deliberation model optimizes both ASR and SLU
components jointly. To achieve on-device streaming function-
ality, the first pass ASR component is implemented using the
Recurrent Neural Network Transducer (RNNT) [22–24].

To maintain transcription accuracy, the ASR component
of our deliberation model is trained independently and kept
frozen. Our deliberation-based SLU model comprises two pri-
mary modules: (1) Fusion, and (2) Decoder. The fusion module
combines intermediate audio and text embeddings from the first
pass RNNT encoder and predictor respectively. Using Multi-
Head Attention [25], the fusion module generates a combined
representation that is used by the transformer-based decoder
module to predict the target semantic parse sequence.

3. Speech Representations
3.1. Joint Audio-Text Training (JAT)

Joint Audio-Text training (JAT) [11] is a recent approach for
leveraging unpaired text-only data to improve ASR [10, 11, 26,

27]. Unlike shallow fusion that considers token distributions
from an external neural network language model (NNLM), JAT
does not require additional model parameters or latency, making
it suitable for on-device streaming ASR. The core idea behind
JAT is that speech representations for unpaired text can be gen-
erated by simply using average speech embeddings computed
over available paired speech/text data. In this paper, we use
the JAT approach to train our Spoken Language Understand-
ing (SLU) models to enable training with both ”speech-text-
semantic parse” and ”text-semantic parse” datasets.

3.2. Speech Synthesis with Voicebox

Voicebox[28] is a state-of-the-art non-autoregressive speech
generation model based on Flow Matching [29]. We generate
representations for unpaired text by extracting speech features
from synthesized speech. Synthetic speech can be obtained by
using Voicebox in TTS mode, i.e. where audio is generated by
conditioning on input text. Different from [28], the Voicebox
model we use represents input text as graphemes rather than
phonemes. To generate audio, we first sample unit durations for
each grapheme in the input text using a flow-matching-based
duration model and then upsample the grapheme sequence us-
ing the unit duration information. This information is used as
conditioning to generate the spectrogram using the audio model.
Finally, we used a HiFi-GAN [30] vocoder to convert the spec-
trograms into time-domain signals.

4. Generating Textual Data with LLama 2.0
LLama 2.0 [14] is a public open-source large language model
trained on large volumes of publicly available data and code
with context as large as 4096. In this paper, we use the 13B
parameter chat model.

4.1. Generating Textual Data for Existing Domains

In the ED setup, we propose to use LLMs to generate tran-
scripts. Corresponding semantic parses are obtained using a
pseudo-labeling textual semantic parse model trained on exist-
ing paired data. The semantic parse model here takes transcripts
as inputs and produces pseudo-label semantic parses as output.
Transcripts can be generated using one of two prompting strate-
gies, i.e., intent-word-based or exemplar-based.

4.1.1. Intent Word-based prompting (IWP)

The goal of IWP is to generate transcripts that may be classified
under a certain intent, optionally containing ”intent words”. In-
tent words are the words from semantic parses that occur most
frequently with given intents after removing stop-words. The
40 words that co-occur most frequently with every intent in the
STOP data are used as intent words. 40 examples are generated
for every intent and intent-word combination. Though IWP pro-
duces good synthetic data, it is limited by the fact that words
that co-occur less frequently with the intent are less related to
the intent. Such examples produced with less relevant intent
words may not be classified under the desired intent class. This
also limits the amount of synthetic data that can be generated
since the LLM cannot generate many unique examples using a
small number of intent-intent word combinations.

4.1.2. Exemplar-based Prompting (EP)

Since LLMs are strong in-context learners [31], an alternative
approach is to prompt LLMs to generate transcripts based on



examples. For every intent-slot combination, we provide up to
4 random example transcripts and ask the model to generate 60
more transcripts that are similar but have diverse sentence struc-
tures. Though the resulting transcripts may not always corre-
spond to the intent classes from which the examples are drawn,
this method enables us to generate larger volumes of data with-
out duplication.

4.1.3. Semantic Parse generation and Quality Assessment

Transcripts generated by LLMs are first normalized – written
text is converted to spoken form, punctuation except apostro-
phes are removed and text is transformed into lower case. Se-
mantic parse pseudo-labels are obtained from these normal-
ized transcripts using a strong RoBERTa-based semantic parser
trained on STOP (EM=86.8). To assess data quality, we com-
pare the intent in the obtained pseudo-labels to the intent in the
prompt for IWP or the intent of the provided examples for EP.
Intent Match Accuracy (IMA) is defined as the percentage of
times the intent of the pseudo-label matches the desired intent
of the prompt.

4.2. Transcript-Semantic Parse for New Domains

For new domains, paired data and pre-trained models are not
available, and therefore, we would need to directly generate
pairs of transcript and semantic parse. One way to do this
is to generate pairs of semantic parse and corresponding tran-
script using LLMs directly, however, maintaining consistency
across generated parses and transcripts is challenging for cur-
rent LLMs. Another alternative is to generate only the seqlogi-
cal form of the semantic parse from the LLM and infer the tran-
script from the parse. The seqlogical form of the parse, unlike
the decoupled form, comprises all the words in the transcript
along with slot and intent tags. Therefore, the transcript can be
obtained from the seqlogical parse merely by removing slot and
intent tags.

4.2.1. Exemplar-based Prompting

We assume that (a) the intents and slots that must be recognized
for the new domain are known, (b) the slots that may occur
with every intent, i.e., the intent-slot combinations are known,
and (c) some manually annotated examples for every intent-slot
combination are known. Using this information, LLMs can be
prompted to produce new seqlogical parses for a given intent-
slot combinations. The prompt first describes the steps to gen-
erate a valid seqlogical parse and then presents up to 3 examples
of seqlogical parses with the desired intent-slot combinations.

4.2.2. Post-processing

The generated seqlogical parses are checked for invalid place-
ment of brackets, and Out of Vocabulary (OOV) intents and
slots. OOV intents were fixed by re-prompting the model to re-
place OOV intents with correct intents and replace any intents
other than the first. Any OOV slots are removed while retaining
corresponding slot words.

5. Experimental Setup
5.1. STOP Data, Model and Metrics

Data: STOP 1 [32] is a public dataset with 100 hours of real
speech for spoken semantic parsing. STOP has data for 8 do-
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mains - alarm, event, messaging, music, navigation, reminder,
timer, and weather and has 28 unique intents and 82 slot types.
Metrics: Exact Match (EM) is used to evaluate all our models.
We report EM (No Err) and EM w/ Err, which are the Exact
Match accuracies averaged over utterances with no ASR error
and averaged over utterances with any ASR error respectively.
Model Configuration: For the ASR module, we use RNNT
with 3 layers of conformer in the encoder, 1 layer of LSTM in
the predictor, and 1 linear layer in the joiner. For the deliber-
ation model, we use attention in the Fusion module, 2 trans-
former encoder layers in the Pooling module, and a transformer
decoder layer with a pointer-generator in the Decoder module
[21]. Models are optimized with Adam [33], having a peak
learning rate of 8e-3.
Voicebox TTS Model: We use a Voicebox model trained on ap-
proximately 14k hours of manually transcribed data that com-
prises a diverse range of speakers, accents, topics, and acoustic
conditions. The audio model has 12 transformer layers [25]
containing 16 attention heads, convolutional positional embed-
dings [34] and ALiBi self-attention bias [35]. Graphemes are
embedded into 80-d features and concatenated with the 80-d
log-mel features. The duration model has 8 transformer layers
with 8 heads, and graphemes are embedded into 40-d features.
Hyperparameters are similar to the setup described in [28].
Computational Cost : Our experiments were performed on a
single node with 8 V100-32 GB GPUs on the cluster. Each run
took approximately 18 hours for model training. For LLama2
inference, we used 4 x V100-32 GB or 2 x A100-40GB with
model parallelism and fp32 precision. For Voicebox inference,
we used 1X V100-32 GB GPUs over 40 parallel processes to
speed up speech synthesis.

5.2. Setup: Textual Data from Text Corpora

For experiments where we assume textual data is available, we
split the STOP datasets into two parts. We perform two ex-
periments – one using the first and second splits as paired and
unpaired data respectively and the other using the second and
first splits as paired and unpaired data respectively. The aver-
age performance across these 2 experiments is reported in each
case. In the ED setup, equal amounts of data from every domain
are present in the two splits. For the ND setup, STOP is split
by domain, where one split contains all training data from 4 do-
mains(messaging, reminder, time, and weather), while the other
split contains training data from the other 4 domains (alarm,
event, music, and navigation). Both splits are designed to en-
sure that they have a nearly equal number of utterances.

5.3. Setup: Textual Data from LLMs

When unpaired data is not available, we use Llama 2.0 to gen-
erate examples for the ED and ND setups. For the ED setup,
LLama 2.0 is used to generate utterances. We then use a pre-
trained 12-layer RoBERTa model trained on STOP to generate
pseudo-labels for the generated utterances. We augment STOP
with the generated LLama 2.0 transcript-semantic parse. JAT is
used to represent LLama 2 text.

For the ND setup, LLama 2.0 generated data is not suitable
as a real test set since it does not have matching real speech.
Therefore, we choose to partition the existing STOP data into 7
seen domains and 1 new domain - weather. We use exemplar-
based prompting to generate transcript-semantic parse pairs for
weather. For this, real examples of transcript-semantic parse
from STOP are used. We use TTS to generate equivalent speech
representations for the generated data. We compare the perfor-



mance on the weather domain for models trained on (a) 7 do-
mains of STOP, (b) 7 domains of STOP with examples for the
weather (with TTS for examples and real speech for 7 domains),
(c) 7 domains of STOP with examples and Llama 2.0 generated
data, and (d) the topline that uses 7 domains of STOP with real
data and TTS.

6. Experiments

Table 1: Comparing JAT and TTS as speech representations for
unpaired text from ED and ND. Number of paired and unpaired
utterances, and Exact Match (EM) is reported

Model #Pair/#Unpair EM EM(No Err) EM w/ Err

E
D

Baseline 60.4k / 0 64.25 80.51 24.37
w/ JAT 60.4k / 60.4k 66.92 83.90 25.25
w/ TTS 60.4 / 60.4k 67.05 83.88 25.80

N
D

Baseline 60.7k / 0 33.28 41.32 13.54
w/ JAT 60.7k / 60.1k 57.74 73.34 19.50
w/ TTS 60.7k / 60.1k 63.95 80.70 22.88

Topline 120.9k / 0 67.67 84.52 26.34

Table 2: Impact of Paired-Unpaired Data Ratio on JAT Perfor-
mance under the Existing Domain Setting

Pair (%) Unpair (%) EM-No Err EM-ASR Error EM (overall)
0 100 85.48 21.22 66.87

30 70 84.27 24.67 67.01
50 50 84.15 25.5 67.17
70 30 84.24 25.43 67.2
100 0 84.52 26.34 67.67

6.1. When textual data is available

Table 1 compares the performance of different models for the
ED and ND settings where unpaired text is drawn from existing
domains and new domains respectively. Across both ED and
ND setups, we find that the use of unpaired text improves EM
scores.

For the ED setup, we find that JAT and TTS achieve similar
Exact Match scores. Since JAT is comparable in performance
to TTS and relatively inexpensive compared to complex TTS
models like Voicebox, JAT is optimal for the ED setup. TTS
model training depends on the specific model, but in our case,
Voicebox training takes 3 days on 8 GPUs, and inference to pro-
duce synthetic speech takes 3 hours on 40 parallel GPU infer-
ence jobs. In comparison, JAT data preparation involves using
mean speech embeddings, which takes 1 hour on 40 CPUs for
the STOP training, evaluation, and test data. Therefore, JAT
indeed takes little time in comparison to TTS.

Further, the difference between JAT and TTS appears to be
primarily on utterances with ASR errors, since synthetic speech
representations can be used to reduce the impact of ASR errors
on semantic parsing. For the ND setup, we find that though JAT
outperforms the baseline, TTS outperforms JAT. This is because
new domains may have different entities and domain-specific
terms that may be harder to recognize, and TTS provides valid
speech representations that can be used to improve predictions
based on the first-pass ASR.

Table 3: Assessing the impact of augmenting the training data
with LLama 2.0 generated utterances and RoBERTa pseudo-
labels.EM is Exact Match Accuracy

Model #Utts IMA EM EM(No Err) EM w/ Err

STOP Baseline 160k - 67.37 84.52 26.34
+ IWP-JAT 230k 68.87 68.12 84.96 26.82
+ EP-JAT 218k 64.24 68.21 85.01 27.04
+ (IWP+EP)-JAT 298k 67.87 68.75 85.82 26.86

6.2. LLama 2.0 Generated Data: ED Setup

Table 3 compares various prompting strategies for generating
utterances in the same domain using Llama 2.0. We find that
combining LLama-generated data with existing STOP data can
improve performance across test examples with and without
ASR errors. On further analysis, we find that significant im-
provements are observed across domains with relatively poor
performance in the STOP baseline. Between IWP and EP, we
find that EP is slightly better. Since EP is not constrained to
generate utterances that may be classified under a given intent,
the Intent Match Accuracy (IMA) is lower than that of IWP.
Combining the data generated from both these strategies further
improves performance over the STOP baseline.

6.3. LLama 2.0 Generated Data: ND Setup

Table 4: Using TTS to generate speech for LLama 2.0 text when
unpaired text is in an unseen new domain

Model #Utts(Weather) Weather EM Overall EM

STOP 7 dom. 0 0 54.61
+ 3 real example-TTS 360 48.18 61.80
+ Exemplar LLama2-TTS 2,910 50.82 62.29

Topline: STOP Weather-TTS 2,910 63.80 66.33

Table 4 compares the performance of baseline models that
have no data for weather or 360 examples for weather with mod-
els that use LLama 2.0 generated data. Llama 2 generated text
can improve performance by over 2 points absolute EM but lags
behind the performance of a topline that uses data from STOP.

7. Conclusion
We address the high cost of manually labeling speech-
transcript-semantic parse data for spoken semantic parsing by
enabling models to use text-only data. JAT is preferred for un-
paired text in existing domains for its efficiency and gain of 2.5
% EM over a paired data baseline while remaining within 0.1 %
EM of the more computationally expensive TTS. For unpaired
text in new domains, TTS outperforms JAT by 6 % absolute
EM overall, with a gain of 30.6 % EM over a paired baseline.
When text data cannot be obtained from existing text corpora,
we propose to prompt LLMs to generate transcript-semantic
parse pairs. We show that using different prompting strategies,
we can generate unpaired text data in relatively large volumes.
Using JAT and TTS, we can leverage this LLM-generated data
to further improve SSP by 1.4 % EM and 2.6 % EM absolute
for existing and new domains.
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