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Abstract

Currently, a common approach in many speech processing
tasks is to leverage large scale pre-trained models by fine-tuning
them on in-domain data for a particular application. Yet obtain-
ing even a small amount of such data could be problematic espe-
cially for sensitive domains and conversational speech scenar-
ios, due both to privacy issues and annotation costs. To address
this, synthetic data generation using single speaker datasets has
been employed. Yet, for multi-speaker cases, such approach
often requires extensive manual effort and is prone to domain
mismatches. In this work, we propose a synthetic data gen-
eration pipeline for multi-speaker conversational ASR, lever-
aging a large language model (LLM) for content creation and
a conversational multi-speaker text-to-speech (TTS) model for
speech synthesis. We conduct evaluation by fine-tuning the
Whisper ASR model for telephone and distant conversational
speech settings, using both in-domain data and generated syn-
thetic data. Results show that the proposed method is able to
significantly outperform classical multi-speaker generation ap-
proaches that use external non-conversational speech datasets.
Index Terms: generative synthetic data, multi-talker speech
recognition, text-to-speech, conversational speech processing

1. Introduction

Current robust speech processing methods are incredibly data
hungry. For example, state-of-the-art automatic speech recog-
nition (ASR) systems require tens or even hundreds of thou-
sands of hours of training data in order to achieve enough ro-
bustness in different domains [1-3]. Such amount of training
data is leveraged either explicitly by training from scratch on
a large amount of data or implicitly, by fine-tuning/adapting a
pre-trained “foundation” model which in its turn was trained, in
a supervised or unsupervised manner [1,4-6], on a large dataset.

Nevertheless, for some domains, even obtaining a small
portion of in-domain supervised data for fine-tuning is prob-
lematic as it could raise privacy concerns and/or be significantly
expensive. This is especially true for sensitive application sce-
narios: medical applications, government, law enforcement et
cetera. Moreover, as regulations get stricter in many countries,
scaling in-domain training data is becoming more difficult also
in other domains.

To be fair, aside from privacy issues, application scenarios
that require recordings with multiple speakers are also inher-
ently difficult, time-consuming and, crucially costly to annotate
and thus to obtain in scale. Prominent examples are meeting
scenarios [7,8] including doctor-patient recordings, speech cap-
tioning, speech analytics and so on.
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Instead, at the same time, there are speech processing ap-
proaches that need such multi-speaker conversational data for
training. Crucially these have also been proven to be effec-
tive on such data as demonstrated in recent speech processing
challenges [7-9]. Prominent examples are end-to-end neural
diarization (EEND) and most target speaker voice activity de-
tection (TS-VAD) approaches [10-14] as well as multi-speaker
ASR [15-19]. Lack of annotated in-domain conversational data
at scale is a significant issue for these techniques which is only
partly mitigated by leveraging foundation models [17-19]. As
such, many of these approaches have to rely on synthetic data to
increase the training material. This is usually obtained by artifi-
cially overlapping clips from existing datasets and adding noise
and reverberation.

While several toolkits to ease the workload have been pro-
posed [20, 21], creating synthetic datasets is still more an art
than a science as it often needs lots of hand-tuning, domain
knowledge, heuristics and significant trial and error. This pro-
cess is also highly prone to the introduction of unwanted biases
in the resulting dataset, leading to a performance drop due to
domain mismatch [12].

As such it is desirable to have more automated, machine
learning based approaches for such synthetic data creation.
And in fact, several methods have explored such research di-
rection, mainly focusing on improving ASR performance by
leveraging synthetic data created with text-to-speech (TTS)
models [22-27, 27-31] or leveraging ASR and TTS cycle-
consistency during training [32, 33] for semi-supervised train-
ing. However, all these approaches focused on single-speaker
scenarios, making them unsuitable for the aforementioned ap-
plication domains where multi-talker conversational ASR is re-
quired. In parallel, recent works [34,35] on respectively speech
summarization and audio captioning, have shown how large-
language models (LLM) can be leveraged eftectively for syn-
thetic data audio augmentation.

Building upon these previous works, here we explore the in-
triguing possibility of using TTS models in conjunction with a
LLM to generate multi-speaker conversational data. In this pre-
liminary work we focus on 2 speakers multi-speaker ASR on
real-world telephone (Fisher [36]) and distant speech recogni-
tion settings (Mixer 6 Speech [37]) by fine-tuning Whisper [1].
The contributions of this work are the following: 1) we propose
a synthetic data generation pipeline for conversational ASR by
using LLMs for content generation and a conversational multi-
speaker TTS model for speech generation; 2) we perform a sys-
tematic investigation on the use of synthetic data for training
multi-speaker ASR models obtained with different approaches:
using “classical” LibriSpeech based multi-speaker simulation,
using a conventional state-of-the-art (SotA) TTS model and fi-
nally using a recently proposed conversational TTS model [38].



2. Method under study

Our approach is summarized in Figure 1. We consider the use
of a pre-trained chat-optimized LLM for creating short con-
versation transcripts between two participants from scratch for
when in-domain conversational transcriptions are not available
or would be costly to obtain. In detail, in this work, we use the
recently released Llama 3 Instruct model and few-shot prompt
it with 8 prompt examples randomly selected from a 1000 ex-
amples subset of Spotify Podcasts dataset [39] text data (same
data used for training the Parakeet TTS model see following
Sec. 2.1). That is, for each new example we want to generate,
we randomly select a subset of eight text examples from our
Parakeet subset to use as the few-shot prompt. Such procedure
could also be used to augment existing in-domain text-only data
in the same way and/or by fine-tuning the LLM on some of the
in-domain data.

These LLM obtained transcripts are then used to generate
synthesized speech through a multi-speaker TTS model. The
resulting data, consisting of ground truth multi-speaker tran-
scripts and the synthesized multi-speaker mixture can then be
used for training or fine-tuning purposes, i.e. in Sec. 4 for adapt-
ing Whisper to perform multi-speaker ASR.

2.1. Conversational TTS generation

The effectiveness of such an approach will heavily depend on
the capability of the TTS model used. While we expect LLMs
will be proficient in generating conversational transcripts as
shown in previous work on summarization [34], most TTS
models are not capable of synthesizing multi-speaker conver-
sational data. In fact, one could naively generate each speaker’s
utterances independently and then stitch them together, how-
ever such an approach would fail to capture real conversational
speech turn taking dynamics and para-linguistic subtleties such
as changes of intonation, etc., and would therefore potentially
introduce a domain mismatch in the generated audio.

Recently, in [38] a conversational TTS model, Parakeet,
has been proposed. Parakeet’s training dataset includes 60,000
hours of Spotify Podcasts data, much of which is multi-speaker
Therefore it is able to directly generate two-speaker short con-
versations of up to 30 seconds when given a text in the style
of the one in Figure 1 i.e. with speaker-id related tags [S1]
and [S2]. We use a diffusion version of Parakeet that, similarly
to [40] autoregressively generate blocks of continuous latents
using latent diffusion on each block. Each block consists of
128 latents. We use an autoencoder that maps 44,100 Hz audio
to 16-channel dimensional latents, with a time downsampling
factor of 1024.

LLM-generated transcripts and speech examples are avail-
able online'.

3. Experimental setup
3.1. Evaluation data

As said, in this preliminary work we focus on 2 speakers multi-
speaker conversational ASR. This is primarily because the Para-
keet TTS model only supports 2 speakers utterances due to the
training data that was used. In addition, we also consider sce-
narios with relative high signal-to-noise ratio (SNR). In fact,
tackling more complex settings such as CHiME-6 [7] requires
to also model the background noise and dynamic acoustic con-
ditions (as the participants move, reverberation can change sig-
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Figure 1: Block diagram of the proposed approach.

nificantly). We thus perform our experiments using two conver-
sational speech datasets with these characteristics: Fisher Cor-
pus (both Part 1 and Part 2) and Mixer 6 Speech.

3.1.1. Fisher

Fisher comprises of 11699 telephone conversations between
two English speakers sampled at 8 kHz. Each conversation is
around 10 minutes long. We use the train, validation and test
split from [41] (11577, 61 and 61 conversations of respectively
1960h, 7h and 7h). Due to being telephone speech, it fea-
tures separate channels for each of the two speakers. However,
since our focus here is more general single-channel conversa-
tional speech processing, we mixdown the two to mono. We
also resample the signal to 16 kHz as we use Whisper which
was trained on 16 kHz data (see Sec. 3.3).

3.1.2. Mixer 6 Speech

As an additional scenario we consider Mixer 6 Speech and, in
detail, the version re-annotated for the CHiME-7 challenge [8].
It consists of 2-speakers interviews of approximately 15 min-
utes (sampled at 16kHz) recorded by 14 different far-field
recording devices. For our purposes here we use only the table-
top microphone device (CH04). We use the splitting from [8],
where full long-form annotation is only available for the devel-
opment (59 interviews, 15 h) and evaluation sets (23 interviews,
13 h). Here we further split the development set into an adapta-
tion portion and a validation portion of respectively 2:30 h and
4h after discarding utterance groups longer than 30s as done
in [19]. This further split allows to compare the use of synthetic
data versus in-domain data for fine-tuning.

3.2. Baseline Methods
3.2.1. NeMo multi-speaker simulation tool

In this work we consider two baseline methods. First, a “clas-
sical” synthetic speech generation method i.e. where sin-
gle speaker speech from one high quality speech dataset (e.g.
LibriSpeech [42]) is used to construct conversation-style fake
recordings by artificially overlapping single speaker utterances
and contaminating them by adding noise, artificial room im-
pulse response (RIR) or other transforms (e.g. clipping, micro-
phone transfer function etc.). We make use here of the SotA
NeMo multi-speaker simulation tool [21] (NeMo MSS in the
following). In detail, we use LibriSpeech train-clean 360 and
100 portions and generate 100 h of short conversations between
two speakers of up to 30 seconds in length. For Mixer 6 Speech
experiments, we use additionally the built-in RIR simulation in
order to generate simulated far-field speech.



3.2.2. xTTS-v2

The second baseline method we consider is the approach out-
lined in Section 2, where a standard TTS model is used to gen-
erate the training data. For the TTS model we consider Co-
qui xXTTS-v2 model [43] (denoted simply as xTTS in Sec. 4)
In detail, for each utterance group in the training dataset (either
LLM-generated or taken from a text-only corpus) we sample
two speaker ids from LibriSpeech train-clean 360 and 100 and
then two corresponding LibriSpeech enrollment utterances to
condition XTTS-v2 for the generated TTS id. Then we generate
each utterance in the utterance group independently via xXTTS-
v2 and truncate excessive leading and trailing silence regions
using Silero VAD [44]. These are then resampled to 16 kHz
and mixed together by randomly adding start time offsets based
on the order of the sentences in the utterance group transcript,
ensuring that utterances from the same speaker do not overlap.

3.3. ASR System

As said, in this work, we focus on conversational speech recog-
nition (CSR). For our experiments, which consider 2 speakers
conversational speech, we use the method proposed in [19]
where Whisper [1] was adapted to perform multi-speaker ASR
by fine-tuning it with a serialized output training (SOT) [15] ob-
jective on utterance groups. This approach aligns with common
practices in the field where often a model pre-trained on a large
amount of data (i.e. a foundation model) is fine-tuned/adapted
for a particular domain or application of interest.

Compared to [19], in our experiments we focus only on
standard SOT without considering timestamps and use only
Whisper medium. We use low-rank adapters (LoRA) [45] while
the rest of the model is kept frozen. During each fine-tuning ex-
periment a linear warm-up schedule is employed for the first N
epoch, then the learning rate is linearly decayed till a maximum
of 20 epochs. The L? norm of the gradients is clipped to 5.
One LoRA adapter for each linear layer in the model (i.e. for
each query, key, value and feed-forward network layer) is em-
ployed. For each adapter we set parameters rank to 64, alpha to
128 and dropout to 0.1. In our preliminary experiments with the
full Fisher training set, we found that this configuration yielded
the best results, even when compared to fine-tuning the entire
model. If validation loss does not improve for 2 consecutive
epochs the training is halted. We tune the batch size, amount
of warm-up epochs (V) and the value of the maximum learn-
ing rate for each set of experiments. Parakeet synthesized audio
is resampled to 16 kHz in our experiments and during training,
for Fisher experiments, for all synthetic data, we use on-the-fly
resampling to simulate telephone 3400 Hz band-limiting. In-
stead, for Mixer 6 experiments, only for xXTTS and Parakeet, we
contaminate the data with reverberation using random RIRs ob-
tained from [46]. This of course is less realistic than the RIR
simulation used in NeMo MSS as the RIR is the same for both
speakers. We make our fine-tuning code publicly available?.

3.4. Evaluation Setup

For each dataset, we run our experiments using the same setup
as in [19], where oracle voice activity detection (VAD) is
considered and the dataset is divided into several utterance
groups [3, 19]. Again, following [19], we then perform eval-
uation for each utterance group independently and accumulate
word error rate (WER) statistics over the whole dataset (inser-
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tions, deletions etc.). This is because in this preliminary work,
as said, we only focus on multi-speaker ASR, and an evaluation
which considers the whole conversation (e.g. as in CHiME-
6/7) would require a diarization component. Thus contaminat-
ing and complicate the results analysis.

As figure of merits we thus consider concatenated mini-
mum permutation WER (cpWER) [7]. This is the same as
WER figure in [19], with the best permutation evaluated for
each utterance group independently. We also consider multi-
input multi-output WER (MIMO-WER), which, contrary to cp-
WER, is more tolerant to speaker assignment errors. Meeteval
toolkit [47] was used to compute both. Whisper text normaliza-
tion is used both during training and scoring.

4. Experiments
4.1. Fisher

In Table 1 we report results obtained on the Fisher test set as
defined in Sec. 3.1.1 with different data used for fine-tuning.
As a baseline, in the first row, we report the results with no
adaptation in the first row while in the second panel results with
in-domain Fisher training data adaptation. We can observe that
the difference between using the full training set or a 80 h data
subset is modest, due to the fact we are leveraging a strong pre-
trained model. In the third and bottom panel we instead report
results obtained with the synthetic data approaches under study.
In particular, for the two TTS approaches (xXTTS and Parakeet),
we consider two opposite situations: a best-case/oracle sce-
nario where we use in-domain conversation transcriptions and
another one where we suppose we have none and thus we use
as input Llama-3 random generated utterance groups transcripts
(LLM,.,,4) as described in Sec. 2.

We can observe that xTTS-based generation is able to
improve over NeMo MSS when Fisher only transcriptions
(Fisher) are used. When LLM generated transcriptions are used
(LLM,,,q) its performance is on par/slightly worse. Instead for
Parakeet, the difference between using LLM generated tran-
scripts and using directly Fisher training set transcriptions is
modest and actually the generated ones afford the best perfor-
mance. In general, while the performance gain compared to
the baseline synthetic data approaches (xXTTS and NeMo MSS)
is significant there remains a substantial gap compared to us-
ing in-domain data (Fisher). It appears that this gap cannot be
bridged solely by scaling the amount of synthetic data.

In Figure 2 we report cpWER on Fisher for different
amounts of adaptation data, both from Fisher training set and
from synthetic approaches. It can be seen that for modest
amounts of data (less than 5h) the proposed approach can be
competitive to using in-domain data, however as adaptation data
amount is scaled its performance saturates quickly: the im-
provement between 50 h and 5 h is marginal when compared to
the one afforded by using in-domain data. This trend is also ob-
served for the other synthetic data approaches and suggests that
indeed there is some inherent mismatch in all synthetic data ap-
proaches that prevents effective scaling. Again, for Parakeet at
least, results suggest that this mismatch seems to be more re-
lated to the signal/acoustical content rather than the semantical
content as the gap between using Fisher transcriptions or LLM
ones appears to be modest.

4.2. Mixer 6 Speech

In Table 2, we show results obtained on the Mixer 6 scenario.
The trends observed on Fisher are largely the same also here,



Table 1: Multi-speaker ASR results on Fisher test set with dif-
ferent adaptation data.

Adaptation Data ~ amount cpWER MIMO-WER
(hours) (%) (%)

- 0 44.94 26.15

Fisher 1960 13.76 13.58

Fisher 80 1543 14.94

NeMo MSS 80 34.37 26.51

xTTS (Fisher) 80 24.88 24.07

xTTS (LLM;r4) 80 34.65 28.31

Parakeet (Fisher) 80 21.44 21.00
Parakeet (LLM,.,q) 80 20.41 19.48
Parakeet (LLM,.,q) 160 19.93 19.45
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Figure 2: Multi-speaker ASR results on Fisher test set for dif-
ferent adaptation data sources and quantity.

despite the rather naive artificial reverberation strategy used for
xTTS and Parakeet experiments. This confirms that the pro-
posed approach can be also effective for far-field multi-speaker
synthetic data, at least when compared to the classical approach
(NeMo MSS results) and when available in-domain data is very
scarce (here 2:30h). Parakeet (LLM,,4, 80h) also compares
favorably with the third and fourth rows, where we report the
results of using instead the Fisher full 1960h training set and
a 80h subset for adaptation. For these Fisher experiments, to
reduce the mismatch due to the telephone lower sampling fre-
quency, we applied telephone band-limiting to Mixer 6 in the
inference phase. We also contaminated the Fisher 6 training
data with reverberation as done for Parakeet and xTTS as de-
scribed in Sec. 3.3.

4.3. Further discussion & remarks

Considering both Fisher and Mixer 6 experiments, the fact
that Parakeet+LLM,.,,4 improves considerably over NeMo MSS
while xTTS fails, suggest that turn-taking and para-linguistics
may play a considerable role for multi-talker ASR.

Finally, for both Mixer 6 Speech and Fisher scenarios, we
tried to use 50 h of synthetic LLM,.,,4 data from the methods
under study to augment a portion of in-domain data (5 h and
50 h) by mixing the two or by training on synthetic data and

Table 2: Multi-speaker ASR results on Mixer 6 Speech eval set
with different adaptation data.

Adaptation Data ~ amount cpWER MIMO-WER
(hours) (%) (%)
- 0 43.67 32.16
Mixer6 230 20.36 19.77
Fisher 1960  20.83 20.33
Fisher 80 22.12 21.36
NeMo MSS 80 36.71 28.21
xTTS (Mixer6) 230 2599 24.47

xTTS (LLM,nq) 80 35.65 30.18

Parakeet (Mixer6)  2.30  23.52 22.82
Parakeet (LLM,nq) 2.30  23.70 22.12
Parakeet (LLM,,q) 80 21.25 20.17

then fine-tune on in-domain data. However, in most instances
we failed to improve significantly compared to using only the
in-domain data, with XTTS and NeMo MSS actually degrading
the performance. For example, by combining 50 h of Parakeet
(LLM,1q) and 50 h of original Fisher training data the model
achieved a cpWER of 15.74% which is only marginally better
than the 16.36% obtained with only 50 & of Fisher (Figure 2).
Interestingly, negligible or no improvement was also observed
when the in-domain data was more modest (5h). This result
may be due to the fact that here we are trying to leverage an
already strong pre-trained model and, as such, more than quan-
tity, it is the quality of the adaptation data that matters most. As
such future works may need to focus on few-shot adaptation of
the TTS model to allow to match better the in-domain data.

5. Conclusions

In this work we study the use of synthetically generated data
for multi-speaker ASR, focusing on the 2-speaker case. In de-
tail, our goal is to compare different strategies to obtain such
synthetic data i.e. by using artificially overlapped , a SotA con-
ventional TTS model and, finally also a novel conversational
TTS model capable of generating natively multi-speaker utter-
ances. Results show that this approach is promising and sig-
nificantly outperforms previous SotA multi-speaker simulation
techniques. Furthermore, we show that, for the scenarios con-
sidered, it can achieve performance reasonably close to that of
using in-domain data, but only when such in-domain data is
limited to a few hours. For Mixer 6, our approach also obtained
results comparable to using external real-world multi-speaker
data (Fisher). In general experiments suggest that the LLM gen-
erated transcripts are reliable but that there is currently a perfor-
mance gap with in-domain data (when this latter can be scaled).
This gap is likely due to signal level mismatches and prevents
effective scaling of this approach.

This work, as said, has several limitations. We only consid-
ered two-speaker conversational speech, short 30-second con-
versations, and relatively high SNR scenarios. These con-
straints were primarily imposed by the current limitations of
the Parakeet TTS model. Further research is needed to over-
come these limitations. For example to tackle more complex
noisy/reverberant scenarios the TTS model needs to incorporate
acoustic scenario modeling.
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