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Abstract
Modern speech synthesis systems have improved signifi-

cantly, with synthetic speech being indistinguishable from real
speech. However, efficient and holistic evaluation of synthetic
speech still remains a significant challenge. Human evaluation
using Mean Opinion Score (MOS) is ideal, but inefficient due
to high costs. Therefore, researchers have developed auxiliary
automatic metrics like Word Error Rate (WER) to measure in-
telligibility. Prior works focus on evaluating synthetic speech
based on pre-trained speech recognition models, however, this
can be limiting since this approach primarily measures speech
intelligibility. In this paper, we propose an evaluation technique
involving the training of an ASR model on synthetic speech and
assessing its performance on real speech. Our main assump-
tion is that by training the ASR model on the synthetic speech,
the WER on real speech reflects the similarity between distribu-
tions, a broader assessment of synthetic speech quality beyond
intelligibility. Our proposed metric demonstrates a strong corre-
lation with both MOS naturalness and MOS intelligibility when
compared to SpeechLMScore and MOSNet on three recent Text-
to-Speech (TTS) systems: MQTTS, StyleTTS, and YourTTS.
Index Terms: speech recognition, audio quality assessment,
speech synthesis

1. Introduction
Speech synthesis systems, aka Text-to-Speech (TTS) systems
are increasingly becoming better. TTS systems are generally
judged using the following two criteria: intelligibility and nat-
uralness of the synthesized speech to human listeners. These
metrics are traditionally measured by calculating the Mean Opin-
ion Score (MOS) (or intelligiblity score) of a panel of listeners,
who annotate the synthesized speech with their subjective eval-
uation. However, as is generally the norm for any annotation
process involving human evaluators, computing MOS is time and
resource-expensive. As an alternative, there are other proposed
efficient algorithmically computable metrics [1, 2, 3, 4, 5] which
measure proxies of intelligibility, quality and naturalness of the
synthesized speech for example, such as using an ASR model
trained on real speech to evaluate Word Error Rate (WER) of the
synthesized speech. However, we argue that these metrics fall
short of capturing the real quality of the synthesized speech. In
this paper, we propose a better approximation of these measures
of synthetic speech, which we show to be highly correlated with
MOS.

The top line of synthetic speech in intelligibility and nat-
uralness is real speech, i.e. synthetic speech when closest to
real speech would have the highest measure in these metrics.
Therefore the question we pose in evaluating a TTS system is
“How close is the quality and intelligibility of synthetic speech

generated by the system to that of real speech and how can we
evaluate this?”. We hypothesize that quality and intelligibility
differences between the synthetic and real speech are attributable
to the distributional shift between the two, and any metric which
attempts to quantify these differences must capture this shift.
However explicit knowledge of the true distributions of the two
is infeasible, and measurements must be made through mecha-
nisms that invoke them implicitly.

Traditionally this is done by evaluating the synthetic speech
on an ASR model trained on real speech. However, since speech
synthesis is effectively a maximum likelihood generating process
that attempts to produce the most likely speech signal for any
text, this can result in unrealistically high recognition accura-
cies biased in favor of the synthetic speech and, consequently,
anomalous measurements of the speech quality. We argue that
on the other hand, an ASR model trained on the synthetic speech
and evaluated on real speech better captures the statistical differ-
ence between the two, and would be a better approximation of
the closeness of the real and synthetic speech. Since the ASR
models the distribution of the synthetic speech, its ability to
recognize the real speech exhibits how closely the distributions
of the synthetic training data matches with that of real testing
data.

This paper makes the following contributions:
1. We propose a new evaluation method for TTS that captures

distributional similarity between real and synthetic speech as
a proxy for perceptual speech quality tests.

2. We compare the proposed metric to multiple automatic met-
rics and Mean Opinion Score (MOS), and show that our
metric correlates well with human-provided MOS.

2. Background: Speech Synthesis and
Evaluation

Recent advancements in speech synthesis systems have reached
a point where they are often indistinguishable from human
speech [6]. However, evaluating these systems has become
increasingly complex. The most dependable method for eval-
uating speech synthesis systems from various perspectives is
the Mean Opinion Score (MOS), in which human raters listen
to synthesized speech and assess its naturalness, quality, and
intelligibility using a 5-point Likert scale. However, this process
is time-consuming, expensive, and subject to subjective judg-
ments. To address these challenges, researchers have developed
automatic metrics aimed at reducing evaluation costs. However,
each metric is typically limited to evaluating a specific aspect
of speech synthesis system performance, necessitating the use
of multiple metrics to comprehensively assess these systems.
Recent studies have tackled this challenge through the training
of regression models using pairs of speech MOS scores [7] or



Figure 1: Left: Model trained on real data and tested on synthetic
data.
Right: Model trained on synthetic data and tested on real data.

by utilizing semi-supervised learning methods to acquire MOS
scores. An important constraint associated with this method is
the need for labeled datasets in the same domain, making it less
generalizable [8] to any text-to-speech (TTS) system.

Unsupervised metrics have also been employed to assess
various aspects of speech synthesis, such as the Equal Error
Rate for measuring speaker similarity in synthesized speech
and metrics like Frechet DeepSpeech Distance [5] (FDSD) and
Frechet Speech Distance (FSD) [4] to measure the quality and
diversity of synthetic speech. However, it’s important to note
that each of these metrics focuses on a single factor and can-
not serve as standalone measures. Recently, the utilization of
speech-language models to assess speech quality has revealed
a correlation with MOS scores. The SpeechLMScore [2] calcu-
lates the perplexity of synthetic speech by employing pretrained
autoregressive unit speech language models (uLM) [9]. Another
avenue of exploration involves Automatic Speech Recognition
(ASR)-based metrics. One approach involves measuring the
distance between synthetic and real speech [10] by computing
various distance metrics to assess speaker, prosody, and environ-
mental similarity within real distributions. A commonly used
ASR evaluation method is the computation of Word Error Rate
(WER) [1] for synthetic speech using pre-trained ASR models
to measure intelligibility. Our proposed ASR evaluation ap-
proach seeks to evaluate both the naturalness and intelligibility
of synthetic speech by quantifying the distribution shift between
synthetic and real distributions.

3. Proposed Method
3.1. Divergence metric for Distributional Shift

Given a text T , let Xr be a random variable that represents real
speech signals produced by humans to convey text T . Let Xs

be a random variable that represents synthesized speech from
a TTS model for text T . P (Xr, T ) and P (Xs, T ) are the joint
distributions of the speech and text.

To evaluate the TTS Model, we want to compare these joint
distributions - if the distributions are similar, synthetic speech
has relatively high quality. Therefore, we want to compute a
divergence div(P (Xr, T ), P (Xs, T )) between the probability
distributions, that measures the distance between the two distri-
butions, i.e. distributional shift.

Distributional shifts are typically computed using diver-
gence metrics such as the Kulback-Leibler (KL) divergence [11],
Jensen-Shannon divergence [12], the Earth-mover distance [13]
etc. However, these metrics require explicit knowledge of the
distributions, or at least the ability to compute the probability
of a given instance, if sampling-based approaches are to be
used, which is infeasible, since it requires explicit modelling of
P (Xs, T ) (or P (Xr, T )) whereas neural models only approxi-

mate the conditional probability of T . Furthermore, even with
explicit sampling, given the high dimensionality and time-series
nature of the data, it would require sampling an infeasibly large
number of pairs of (X, t), where X is either Xr or Xs, for
reliable estimates.

To address the limitations of existing distributional similar-
ity metrics, we propose an alternate metric that uses classifica-
tion performances as a proxy to get distributional shifts. This
classification-based pseudo-divergence uses probability distribu-
tions to get accuracy metrics. Given the two data distributions,
input and labels, below we present the general case of the diver-
gence metric.

Let P1 and P2 be two data distributions of random variables
X and y, where X is the input signal and y is the label. The
predicted label for the given input x can be written as:

ŷ1(x) = argmaxyP1(y|x)

When the classification boundaries are learned from P1, and
used to classify the data coming from the same distribution, the
accuracy of this classification can be written as.

EP1(x)[P1(ŷ1(x)|x)]

Using the classification boundaries learned on the distribu-
tion P1 and used to classify the data coming from the distribution
P2, the accuracy can be written as:

EP2(x)[P2(ŷ1(x)|x)]

The difference between the two classification accuracies
captures the distributional shift between the P1 and P2. This can
be written as:

d(P1, P2) = |EP1(x)[P1(ŷ1(x)|x)]− EP2(x)[P2(ŷ1(x)|x)]|

The absolute value is needed since this difference could be neg-
ative. Note that d(P1, P2) is a pseudo-divergence that goes to
zero when P1 = P2 and is non-negative. It is also asymmetric,
so d(P1, P2) ̸= d(P2, P1).

We can use the above formulation to calculate the pseudo-
divergence of the real and synthetic speech. The distributions
P1 and P2 can be estimated using an ASR Model trained on the
data samples taken from the real and synthetic speech respec-
tively. Since this is asymmetric, it is important to note which
divergence to calculate d(P1, P2) or d(P2, P1). Either the ASR
Model trained on real speech and tested on synthetic speech
or vice versa. Empirically we show that the model trained on
synthetic and tested on real data is a more accurate metric for
the distributional shift of the two distributions than doing it vice
versa. We explain the intuition behind this in the following
section.

3.2. Real vs Synthetic data distribution

In synthetic speech generation [14, 15, 4], models often utilize
conditional expectation E[Y |X] where Y is the speech output
and X includes the text and possibly other controlled param-
eters like emotion or prosody. This method produces output
with minimal variance as it targets the most likely output for
given inputs. This deterministic nature of synthetic data gen-
eration leads to distributions that are compact and less varied
compared to real data. Real speech, conversely, not only re-
flects P (Y |X) but is also influenced by multiple latent variables
Z, encompassing unmodeled aspects such as background noise
and environmental factors, leading to the expression P (Y |X,Z)
and inherently resulting in higher entropy and variance. When
training classification models:



• If trained on real data, the classifier learns to navigate the
extensive variance and overlapping class distributions, which
might result in natural Bayes error but equips the model with
robustness to handle diverse real-world data.

• If trained on synthetic data, while the model may achieve
seemingly perfect classification on similar synthetic test data
(due to the absence of class overlap), it struggles with real
data where the variance and class distribution are broader.

While synthetic data can be perfectly classified within its do-
main, its applicability and generalization to real data are limited.
Figure 1 shows the joint distributions X and y where red curve
shows when class y = 1 and blue curve shows class y = 0.
Note that the real data has more variance than the synthetic
data (which is true for the real and synthetic speech). When
the classification boundary for the two classes is learned on the
real data, there is some natural Bayes error associated with the
class overlap present in the real data. When this classification
boundary is used to do classification in the synthetic data, the
error is zero, since the data distributions are far apart and there
is no overlap in the two. In fact, there are multiple decision
boundaries associated with different errors on the real data that
would ensure zero error in the synthetic data. This zero error
does not say anything about how different the real and synthetic
data joint distributions are. The synthetic data distribution could
be far off the chart, be highly unlikely compared to the real data,
and still have zero error.

On the other hand, let’s consider the case where the lower
variance data, i.e. the synthetic data, is used for learning the
classification boundary. The right part of Figure 1 shows this
scenario. The dotted line shows the range where the decision
boundary can lie such that the error rate on the synthetic data
would be zero. However, this range of boundary would always
be associated with greater than zero error on the real data. The
higher the difference in the joint distributions in the real and
synthetic distributions, the greater the range of errors in the real
data.

Therefore, the second scenario is better representative of the
distributional differences in the real and synthetic data distribu-
tions. We believe that this would hold for the real and synthetic
speech distributions. An ASR model trained on synthetic speech
and evaluated on real speech would be a better metric of the qual-
ity of the synthetic speech than doing it the other way around.

4. Experimental setup
4.1. Text-to-Speech-Synthesis

We evaluate the proposed method using three state-of-the-art
open-source TTS systems: StyleTTS [15], MQTTS [16], and
YourTTS [14]. These models utilize different techniques for
synthesis, but all use a reference encoder to extract both speaker
and style information from the input speech. For our assessments,
we made use of the publicly released pre-trained models. The
StyleTTS model, MQTTS, and YourTTS models we used were
trained on LibriTTS [17], Gigaspeech [18] without audiobooks,
and VCTK [19] respectively. A DeepPhonemizer [20] was used
to extract phonemes from the text for synthesis.

4.2. Automatic Speech Recognition

In order to make evaluations robust and meaningful, we need
to select strong End-to-End models. In this paper, we there-
fore elect to fine-tune Whisper rather than train from scratch
using 10h of real/synthetic speech. We use the Whisper-medium

multilingual model [21] as the initialization. We then fine-
tune it within ESPNet [22, 23] using CTC loss [24]. ASR
Inference was performed using beam search with a beam size of
5.

4.3. Datasets

To generate synthetic speech for our evaluation, we utilized the
LibriTTS [17] dataset, which is based on Librispeech [25]. From
this dataset, we sample one subset of 10 hours containing speech
data from all available speakers. All three TTS models used a
speaker encoder to clone the identity of a given speech reference.
It’s worth noting that we excluded speech samples that were less
than 4 seconds in duration and those exceeding 30 seconds in
length. This exclusion was necessary as MQTTS and StyleTTS
do not support short samples as references.

4.4. Evaluation Metrics

MOS-Naturalness (MOS-N) : We conducted a crowd-sourced
Mean Opinion Score (MOS) evaluation to assess the naturalness
of synthetic speech generated by each system, in comparison
to real speech. We obtained 50 sentences from the LibriTTS
test-clean dataset and another 50 from the LibriTTS test-other
dataset, resulting in a total of 100 samples each for real speech,
MQTTS, YourTTS and StyleTTS. Each sample was evaluated
by 10 raters, who were instructed to rate the naturalness of
the speech on a scale of 1 to 5, with 1 indicating poor and 5
indicating excellent quality.

MOS-Intelligibility(MOS-I): We assessed intelligibility of
spoken words by using nonsense sentences [26], effectively
eliminating sentence structure and grammar from the evaluation.
This absence of structure allowed listeners to only focus on
the quality of the synthesized speech and not be distracted
by the grammar. Participants were presented with a choice
between the original sentence and a transcription generated by
the Whisper-medium. We specifically selected 60 sentences
with relatively high Word Error Rate (WER) from a pool of 200
random sentences generated by ChatGPT [27]. Among these,
30 sentences were short (less than 10 words), while the other 30
were long. This allowed us to evaluate the impact of sentence
length variation on intelligibility. We generated synthetic
speech using the three TTS systems for the 60 sentences using a
test-clean set as a reference for the model’s speaker and style
encoder. We used WebMushar [28] to create a test form along
with Prolific for crowd-sourcing.

Intelligibility of Synthetic Speech using WER from Pre-
trained ASR: We computed the WER for synthetic speech gen-
erated by three different systems using the Whisper medium
multilingual. This model is pre-trained on real speech and
evaluated on synthetic speech. This setting of training / testing
demonstrates the traditional way that speech synthesis evalua-
tion is performed. This evaluation was performed on both the
test-clean and test-other datasets from LibriTTS.

5. Experimental Results
Table 1 reports the results of our experiments on Libri-TTS
with the proposed evaluation method. We consider multiple
metrics and report raw scores of the metric in the rows and
relative ranking scores in brackets next to the raw score. The
first row, named WER shows the case when the model is trained
on real data and evaluated on synthetic data. The last row shows



Table 1: This table shows the scores for real and synthetic
speech on multiple metrics for LibriTTS test-clean. MOSNet
and SpeechLMScore scores are on the same 50 samples of MOS-
N. Relative ranking among synthetic speech systems are shown
in red inside the brackets.

MetricModel Ground Truth StyleTTS MQTTS YourTTS
WER ↓ [1] 20.57 18.7(1) 29.35(3) 22.1(2)
SpeechLMScore ↑ [2] 3.98 3.62 (3) 4.13(1) 3.96 (2)
MOSNet ↑ [7] 4.30 4.49(1) 3.57(3) 4.01(2)
MOS-N ↑ 3.69 3.68 (1) 3.66 (2) 3.59 (3)
MOS-I ↑ - 0.698(1) 0.618(2) 0.566 (3)
Ours 10h ↓ 3.1 3.3 (1) 3.9(2) 4.8 (3)
Ours 50h ↓ 2.3 3.2 (1) 4.2(2) 4.5 (3)

our setting, where the model is trained on synthetic data and
evaluated on real data. Based on the absolute raw numbers
of the metric, we rank the TTS systems from 1 to 3 based on
which one performs the best to worst. For example in the row
MOS-N, Style-TTS has the highest score and therefore has rank
1, followed by MQ-TTS and then YourTTS. In order to assess
whether our metric is a good representation of the quality of
synthetic speech, we compare the relative ranking of our metric
with the other metrics. Two metrics with a matched relative
ranking means that the metrics evaluate the quality of speech
similarly and agree with each other.

First, we see that the Mean Opinion Score tests on natu-
ralness (MOS-N) and intelligibility (MOS-I) agree on relative
rankings between the synthetic speech models. Further, we ob-
serve that the traditionally used WER metric shown in the first
row does not actually correlate completely with the MOS results.
We observe similar issues with other popular metrics including
SpeechLMScore and MOSNet.

From the last row, we observe that our metric evaluation
of synthetic speech has a similar trend as the reported MOS
scores, matching both MOS-N and MOS-I. Compared with the
inconsistent result from the first row and the consistent result
from our metric, we demonstrate the importance of the proposed
evaluation method.

6. Conclusion
In this paper, we address the challenge of automatic evaluation
for synthetic speech by modeling the similarity/dissimilarity be-
tween the distributions of synthetic and real speech. Existing
divergence metrics require a large number of samples to capture
the joint distribution and hence it is infeasible to employ them
to calculate the distributional shift. In this paper, we introduce a
new divergence measure that can be computed without knowl-
edge of the joint distribution. The metric uses an ASR model
as an approximation for the data distributions and the WER as
a proxy for the quality of the synthesized speech. The metric is
asymmetric, and it matters what the speech recognition models
are trained and tested on. We show that in practice it is more
accurate to train the model on synthetic speech and assess the
resulting model’s performance on real speech than doing it vice
versa. Experiments using 3 public open-source speech synthesis
systems show that our model correlates positively with subjective
human Mean Opinion Scores for naturalness and intelligibility,
while previously used ways for evaluating ASR performance
trained on real and evaluated on synthetic does not correlate.
Further, we show that it only takes small amounts of synthetic
speech to train the ASR model to be able to make reliable judg-
ments on the quality of the synthesized speech.
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