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Abstract
Current trends in audio anti-spoofing detection research strive to im-
prove models’ ability to generalize across unseen attacks by learning
to identify a variety of spoofing artifacts. This emphasis has primar-
ily focused on the spoof class. Recently, several studies have noted
that the distribution of silence differs between the two classes, which
can serve as a shortcut. In this paper, we extend class-wise inter-
pretations beyond silence. We employ loss analysis and asymmetric
methodologies to move away from traditional attack-focused and
result-oriented evaluations towards a deeper examination of model
behaviors. Our investigations highlight the significant differences in
training dynamics between the two classes, emphasizing the need for
future research to focus on robust modeling of the bonafide class.
Index Terms: anti-spoofing, deepfake detection, spoofing detection,
shortcut learning, ASVspoof

1. Introduction
Recent progress in voice conversion (VC) and text-to-speech (TTS)
technologies have intensified concerns regarding their potential for
malicious use, emphasizing the critical role of audio anti-spoofing
systems. Audio spoofing detection systems, as binary classifiers,
distinguish genuine human speech (bonafide) from artificially gen-
erated (spoofed) speech. The main direction in this field is toward
advancing the systems’ ability to generalize across unseen spoofing
attacks by focusing on learning diverse spoofing artifacts. To this
end, a pivotal shift from traditional hand-crafted features [1, 2]
to data-driven approaches [3–5] and data augmentation [6, 7]
have been pursued. Research on diversifying training data [8–10],
incorporating domain adaptation strategies [11,12], and leveraging
large-scale pre-trained models [13–15] also follow this trend.

Despite these efforts, the evolution of TTS and VC systems,
especially those utilizing state-of-the-art methods like diffusion, are
likely to involve fewer spoofing artifacts and create subtle variations
in them without hard effort. This suggests that learning diverse
spoofing artifacts does not guarantee the detection of emerging
unknown attacks. To tackle this, several studies have explored
methods for modeling robust bonafide features and distinguishing
them from spoof features within the latent space [16–19]. Class-wise
analyses have sought to determine the differences between bonafide
and spoof classes as detailed in [18, 20, 21] and their findings
primarily converge on the impact of ‘silence’, which has a spurious
correlation with spoofing detection.

These kinds of external factors that could unintentionally lead
the biased model predictions are known as shortcuts [22], recently
getting a lot of attention in the broader deep learning literature. These
shortcuts challenge the ability to determine if a model genuinely
distinguishes between classes or relies on irrelevant cues associated
with class labels. In the context of audio anti-spoofing, ‘silence’
is a well-known data bias; for instance, the model trained with

Figure 1: Comparison of training loss. The left and right figures illus-
trate bonafide and spoof classes. x-axis and y-axis indicate training
epochs and loss magnitude. Regardless of the implementation of
data augmentation, the two class losses differ on a large scale.

ASVspoof2017 dataset [23] is vulnerable to silence [24] and the
ASVspoof2019 dataset [25] exhibits an unequal distribution of si-
lence between spoofed and bonafide samples [26,27]. The impact of
silence varies not only with the data source but also with its distinct
types/patterns introduced during data collection. Efforts to under-
stand and mitigate the influence of silence, including the analysis of
silence trimming and its effects, have been undertaken [18,26]. Other
than silence, unveiled factors also have been studied in [28], recently.

While in-depth analyses in audio anti-spoofing have signifi-
cantly advanced the field and provided invaluable insights, several
areas remain for further explorations: (i) the majority of studies
have focused on spoof class, specifically per-attack interpretations;
(ii) analyses on each class exist, yet the emphasis has primarily been
on silence, except for [28] exploring other data bias factors; (iii)
existing analyses predominantly rely on evaluating outcomes, such
as performance metrics and score distributions, without a thorough
examination of the internal workings of models during training. Our
research diverges from existing studies by delving into the training
process through loss analysis and adopting a novel asymmetric
intervention on each class and phase(train and test) to understand
the respective effects.

Our analysis starts with examining the loss curves for bonafide
and spoof classes separately, both with and without the application
of RawBoost [7] data augmentation, as illustrated in Figure 1. Note
that illustrated loss values are raw values. For the model update, a
loss weight of 0.9 (bonafide) and 0.1 (spoof) was employed, consid-
ering the imbalanced number of samples in each class. Interestingly,
the results indicate that the loss associated with the bonafide class
is significantly lower than that for the spoof class. Even if one
considers the loss weights in the training phase, a substantial gap
still remains between the two classes. These results could signify
that the bonafide class is inherently easier to train than the spoof
class. Alternatively, this might suggest that modeling the bona fide
class is not trivial; however, there exists a shortcut that significantly
reduces the training loss. We deploy various loss functions to reveal
the meaning behind the low magnitude of the bonafide loss, between
the two scenarios mentioned. In particular, the objective functions



that can consider the difficulty of samples enable us to understand
how the model deals with each class based on our findings.

Furthermore, our approach involves training and testing the
model with an asymmetric intervention to assess the bonafide
and spoof classes separately. Unlike the methodology in [28],
which applies interventions across both classes and phases for a
comprehensive model-level interpretation, our strategy focuses
interventions on one side only. This allows a more precise
understanding of how different phases and class-specific traits affect
model performance. Additionally, to mitigate potential concerns
regarding the influence of silence, we also conduct our analysis
combined with silence trimming as well, demonstrating that our
findings are not biased by the presence of silence. Our findings pave
the way for new directions of future research, shifting focus from
the currently predominant studies centered around the spoof class.

2. Method
In this section, we introduce two primary methodologies that
facilitate our in-depth investigations of anti-spoofing systems: (i) a
loss-based analysis that contrasts objective functions, distinguishing
between those that prioritize either easier or more challenging
samples, and (ii) an asymmetric intervention analysis that examines
the impact of intervention on phases (train or test) and classes
(bonafide or spoof).

2.1. Loss based analysis
Previous analyses of silence within audio anti-spoofing contexts
have paved the way for separate examinations of bonafide and spoof
classes. This study extends these insights by exploring the various
objective functions that can help us understand the model’s behavior
in each class; loss analysis is widely adopted in machine learning
for understanding the model behavior during the training [29].
Furthermore, the loss has been directly employed in the image
domain to infer data bias in [30–32] by analyzing its correlation
with sample difficulty and data bias.

In this work, we conduct two types of analysis using loss
functions. Initially, we calculate the loss for bonafide and spoof
classes separately during training to observe their convergence
patterns and magnitude differences. Significant differences in these
areas may indicate model bias, as shown in Figure 1. Subsequently,
we differentiate between two categories of loss functions for
assessing model behavior: prioritizing hard or easy samples.
Among diverse loss functions utilized in hard negative mining, we
deliberately choose a few that dynamically modulate each sample’s
impact on the overall loss, rather than explicitly selecting samples.
This strategy enables an in-depth exploration of the model’s inherent
reactions to varying sample types.
FocalLoss [33] prioritizes hard samples by modifying the
categorical cross-entropy loss. It amplifies the loss for samples
with inaccurate model predictions or where the model exhibits
uncertainty (i.e., low predicted probability for the correct class), thus
prioritizing hard or incorrectly classified samples without resorting
to specific sample selection strategies.
SuperLoss [34] assigns a weight to each sample based on a moving
average of its past losses, targeting potentially noisy or outlier
samples. This method progressively focuses on challenging or
ambiguous samples.
CurricularFace [35] emphasizes more challenging samples
by increasing their relative loss compared to easier ones using
class-specific margins. It adjusts the target margins for classes,
making it easier or harder for the model to classify them correctly
as training progresses.
Generalized cross entropy (GCE) [36], in contrast, focuses on

Table 1: Five experimental configurations using eight subsets of a
dataset. O is the original (unintervened) configuration. All other
four sets have one particular subset intervened.

Intervened phase Configuration Train set Test set
- O Dtrn, bona∪Dtrn,spf Dtest, bona∪Dtest, spf

Train Tr B Dintervened
trn, bona ∪Dtrn,spf Dtest, bona∪Dtest, spf

Tr S Dtrn, bona∪Dintervened
trn,spf Dtest, bona∪Dtest, spf

Test Te B Dtrn, bona∪Dtrn,spf Dintervened
test, bona ∪Dtest, spf

Te S Dtrn, bona∪Dtrn,spf Dtest, bona∪Dintervened
test, spf

easier samples. It enhances the penalty for misclassifying classes
with lower probabilities, thereby prioritizing minority classes. This
method can be particularly useful in audio anti-spoofing to direct
the model’s attention towards bonafide samples. In addition, GCE
is employed in model debiasing research to concentrate on biased
samples, aligning with empirical observations that such samples
exhibit lower loss values during training.

2.2. Asymmetric intervention analysis
Our analysis follows an interventional approach proposed recently
in [28] to reveal shortcuts in speech anti-spoofing beyond silence.
The essence of this approach is to intentionally modify (intervene)
an existing dataset to provoke the classifier to rely on shortcuts. We
start by reviewing the approach and then explain how we modify
it in this study.

To explore potential shortcuts in audio anti-spoofing, [28]
employed standard audio manipulations (e.g., MP3 compression or
additive noise) with randomized parameters applied to datasets to cre-
ate artificial statistical associations between the audio and the class
label. For example, applying MP3 compression to only bonafide
data in both training and test data while leaving spoof data unaltered
resulted in equal error rates (EERs) of 0%. Conversely, applying
MP3 compression exclusively to spoofed test data while keeping all
other conditions the same led to an opposite outcome (EER >99%),
illustrating a complete label flip. Such extreme interventions reveal
the vulnerability of the spoofing detection system against potential
bias factors unrelated to spoofing artifacts residing within the data.

The previous approach concurrently applied interventions dur-
ing both training and test phases to understand the overall model’s
behaviors under different interventions, producing the boundary
cases of ‘near-perfect’ outcomes and ‘worse than coin flip’ (label
flip) results. In contrast, our investigation takes a class-wise interpre-
tive approach based on the understanding that each class responds
differently. Consequently, we strategically apply interventions at
only one phase or one class at a time, leveraging two binary dimen-
sions: phase (training or testing) and class (bonafide or spoof). Our
approach enables (i) to reveal the interventions associated with each
class separately, (ii) to evaluate the robustness of the model’s repre-
sentation for each class separately, and (iii) to compare the robustness
of class modeling by observing the outcomes of intervention.

In particular, our methodology of employing class- and
phase-wise intervention in either class in either phase results
in four distinct intervention configurations. Formally, let
D={(xi,yi)|xi∈X,yi∈Y,for i=1,2,...,N , where D represents
the dataset, (xi,yi) denotes an individual sample, and N is the
number of samples. Typically, the corpus is divided into two subsets:
the training (Dtrn) and the test (Dtest) sets. We introduce another
categorization based on class, dividing the dataset into four subsets:
Dtrn, bona, Dtrn, spf, Dtest, bona, Dtest, spf. Furthermore, we generate four
additional subsets with applied interventions, where the labels for
each sample remain: Dintervened

trn, bona , Dintervened
trn, spf , Dintervened

test, bona , Dintervened
test, spf .

Note that the intervention does not affect the ground-truth label Y.
Composing the eight total subsets, we present five experimental
configurations in Table 1: O, Tr B, Tr S, Te B, and Te S.
Therefore, the comparison of B and S, modification on the class



Table 2: Performance comparison on different loss functions.
Apart from original categorical cross entropy (CCE), FocalLoss,
SuperLoss, and CurricularFace are designed to concentrate on hard
samples based on empirical loss while generalized cross entropy
(GCE) focuses on easier samples. All evaluations are conducted
on the ASVspoof2019 LA dataset.

Loss function EER (%)
Original (CCE) 1.39
FocalLoss [33] 1.67
SuperLoss [34] 1.45
CurricularFace [35] 1.53
GCE [36] 1.35

Table 3: Performance comparison in EER when the model is tested
on asymmetric ways. All models are trained on the original training
dataset but evaluated in different configurations. Here, the ratio
indicates a relative change of Te B compared to that of Te S.

System O Te S Te B Ratio
MP3
AASIST 0.83 0.77 9.07 137.33
AASIST-L 1.39 1.21 8.78 41.06
AASIST-L w/ RawBoost 1.59 1.62 3.96 79.00
AASIST-L w/ MDL 0.99 1.29 3.63 8.80
Noise
AASIST 0.83 0.39 31.08 68.75
AASIST-L 1.39 0.65 35.50 46.09
AASIST-L w/ RawBoost 1.59 1.06 13.27 22.04
AASIST-L w/ MDL 0.99 0.69 8.24 24.17
Loudness
AASIST 0.83 1.18 5.33 12.86
AASIST-L 1.39 2.23 6.73 6.36
AASIST-L w/ RawBoost 1.59 1.52 2.38 11.29
AASIST-L w/ MDL 0.99 1.44 4.09 6.89

side, enables us to analyze the class-wise effect of interventions.
Comparison of Tr and Te, on the other hand, helps to understand
the class-wise difference and how the model operates differently
depending on whether the model learns such intervened condition.

3. Experimental setup
3.1. Datasets
ASVspoof2019 [25] is a dataset for logical access (LA) scenario
of audio anti-spoofing and it includes 6 and 13 types of spoofing
attacks in train/dev and test. The number of utterances for train/dev
and test is 50,224 and 71,237, respectively.
ASVspoof2021 [37] includes the latest spoofing attacks, which
consists of different test sets, each for LA and deepfake (DF)
scenarios. The LA and DF subsets include diverse synthetic
techniques and audio compressions, respectively.

3.2. Implementation details
Model architectures used in this paper are AASIST, AASIST-
L [38] models with data augmentation and multi-dataset co-training.
Those two models are state-of-the-art models that directly operate
on raw waveform and they only differ in the number of parameters.
Intervention types are selected among five different interventions
in [28]. We employ three interventions: MP3 compression, additive
white noise, and loudness normalization. Those interventions are
considered since MP3 compression and white noise are discovered
as the most influential ones, while loudness normalization is the
least effective one.

Data augmentation is implemented to check the difference
when we employ the model considered more robust. We utilize
RawBoost [7] which includes three different augmentation
techniques: linear and non-linear convolutive noise, multi-band
filters, and Hammerstein systems [39]. We deploy three of them
simultaneously as it showed the best result in [7].

Multi-dataset trained model with sharpness optimization [10] is
utilized to investigate the robust model similar to data augmentation.
To further the enhance generalization capability, the model is
trained using multiple datasets at the same time and optimized by
sharpness-aware optimization [40]. We select the model trained
by both ASVspoof2015 and ASVspoof2019 LA with adaptive
sharpness-aware minimization (ASAM) [41] as it showed the best
performance in ASVspoof2019 LA evaluation by 0.99% of EER.

Silence trimming is implemented to mitigate the influence of
silence that might distort the imbalance results. Our silence
trimming algorithm works as follows. First, we detect the speech
frames using a simple energy-based algorithm as described in [42].
We have used a frame size of 25 ms with an 8ms shift. Then we
remove the silences where the silence length is more than 50 ms.

4. Results and Analysis
4.1. Comparison of class-wise loss and different objective
functions
As previously introduced in Section 1 with Figure 1, the observed
loss curve reveals an unexpected pattern, especially considering the
predominance of spoof data in the training set; in general, more
frequently represented spoof classes are expected to have lower
losses, consistent with the general bias of neural networks to fo-
cus on more frequently represented classes. The results indicate
that effective training of the bonafide class is hindered not only by
its fewer amount of samples in the training dataset but also by its
comparatively lower loss. Consequently, the neural network would
prioritize minimizing the spoof class’s loss in which the loss scale is
much higher, leading to an inherent bias, which is unintended. This
research marks the first to identify this particular bias within the
context of audio spoofing detection, shedding light on the challenges
posed by class imbalance and its impact on model training dynamics.

Building upon these insights, we further examine the potential
class bias in model training towards the spoof class using diverse loss
functions outlined in Section 2.1. Our comparison, shown in Table 2,
involves four different loss functions – three (FocalLoss [33], Super-
Loss [34], and CurricularFace [35]) designed for challenging (spoof)
samples and one (GCE [36] for easier (bonafide) samples. The
results reveal a decline in performance with the three loss functions
aimed at the spoof class, while the GCE, which prefers the bonafide
class, slightly improves model performance. Despite adjustments us-
ing tunable parameters in FocalLoss, SuperLoss, and CurricularFace,
all outcomes showed no significant enhancement1. Results highlight
the training bias towards the spoof class. This pattern of bias and
its impact on performance encourages us to call for a significant
shift in focus for future audio anti-spoofing efforts, emphasizing
the importance of robust modeling the bonafide class over solely
concentrating on detecting spoofing artifacts. In addition, the field of
anomaly sound detection [43] further demonstrates the advantages
of focusing on bonafide modeling. State-of-the-art systems
prioritize modeling the normal sound class and effectively identify
deviations significantly distant from these norms as anomalies.

1Presented performances are the best results among our experiments.



Table 4: Performance comparison in EER when the model is tested on asymmetric ways with silence trimming. Silence trimming is applied
in both the training and the test phases; we additionally report the results when the silence is only removed from either phase.

System Silence trimming O MP3 Noise Loudness
Te S Te B Ratio Te S Te B Ratio Te S Te B Ratio

AASIST-L - 1.39 1.21 8.78 41.06 0.65 35.50 46.09 2.23 6.73 6.36
AASIST-L w/ RawBoost - 1.59 1.62 3.96 79.00 1.06 13.27 22.04 1.52 2.38 11.29
AASIST-L train 35.05 28.36 39.32 0.64 47.09 28.14 0.57 27.44 47.28 1.61

test 25.14 20.07 37.7 2.48 8.27 59.04 2.01 13.92 40.83 1.40
train&test 18.65 17.52 30.65 10.62 17.24 34.49 11.23 14.79 26.99 2.16

AASIST-L w/ RawBoost train 45.52 40.65 48.47 0.61 66.93 31.14 0.47 36.10 55.35 1.04
test 27.79 29.5 30 1.29 30.74 26.85 0.32 21.82 37.05 1.55
train&test 19.73 17.56 31.69 5.51 21.07 32.35 9.42 12.75 29.73 1.43

Table 5: Performance comparison in EER when the model trained
on asymmetric ways. All evaluations are conducted using original
test set without interventions.

System Intervention
type Config. 2019

LA
2021
LA

2021
DF

Original - - 1.39 12.18 21.8
RawBoost - - 1.59 6.42 17.48

RawBoost

MP3 Tr B 16.21 15.45 30.86
Tr S 3.68 17.81 23.1

Noise Tr B 71.02 62.45 62.66
Tr S 15.48 24.12 30.06

Loudness Tr B 13.05 10.66 18.7
Tr S 1.82 9.49 17.97

4.2. Asymmetric test results
Table 3 presents the results of applying asymmetric interventions to a
specific class during the test phase. These results are analyzed from
two angles: (i) evaluating the intervention’s impact by comparing the
original results (O) with those after interventions on the spoof (Te S)
or bonafide (Te B) classes (columns 2 and 3), and (ii) examining
how interventions differently affect the bonafide class compared
to the spoof class, as indicated in column 4. From the first angle,
enhancements in performance post-intervention hint at possible
model biases due to shortcuts. Conversely, declines indicate the
intervention’s irrelevance to the target class or might reflect domain
differences or unknown factors. The ratio in column 4, calculated as
the relative performance impact (|O−Te B|/O)/(|O−Te S|/O),
offers deeper insight into which class the intervention impacts more.
Here, ratio> 1 refers to a greater influence on the bonafide class,
while ratio<1 implies spoof class is more affected.

Our findings highlight two main observations that align with
our analysis of loss functions. First, interventions are prone to
improve Te S (e.g., AASIST with MP3 or AASIST-L with Noise
on Te S), while consistently lowering Te B performance. This
implies that factors leading to quality degradation in utterances tend
to be linked with the spoof class, helping the model to classify such
inputs as spoofed. The drop in Te B performance may result from
interventions causing bonafide utterances to resemble spoofed ones
more closely. Second, the ratio always surpasses 1, as a universal
trend regardless of which intervention applied. This emphasizes the
bonafide class’s modeling fragility, suggesting that future research
should more focus on the robust modeling of the bonafide class.

4.3. Further test interventions with silence trimming
As introduced in Section 1, the silence could significantly influence
the class-wise imbalance results. This prompts an important
question: “Do our observations remain valid when silence is
excluded from the training or testing datasets or both?” To address
this, we conducted experiments with silence removed – referred to

as silence trimming – to assess its effect on our findings and show
the results in Table 4. The results show a remarkable consistency
across most of our results. When silence was eliminated from both
phases, effectively eliminating its influence, the ratio consistently
exceeded 1, reaching a peak of 11.23. In additional experiments
where silence was removed from only one phase, there were a
few instances where the ratio fell below 1; however, the majority
still exhibited ratios significantly greater than 1. These consistent
outcomes robustly support the conclusion that the presence of
silence does not skew our findings.

4.4. Asymmetric training results
Lastly, we focus on asymmetric interventions during the training
phase to explore two key questions: (i) “What happens when
interventions are applied solely during training?” and (ii) “Does
the class-specific effect of interventions remain consistent if the
test set remains untouched?”2 According to the findings presented
in Table 5, an improvement was observed in only one out of nine
instances for the Tr S condition. In contrast, interventions generally
led to diminished performance in the bonafide class, highlighting
the necessity for more advanced methods to accurately model
genuine speech. Please note that we aim to compare the value
between Tr B and Tr S for each condition to understand how each
class is affected by each intervention, not the improvement from
the baselines in the first two rows. Our findings diverge from those
in [28], with EER deteriorating under all asymmetric intervention
conditions except for one. This discrepancy is likely due to our
one-side distinct strategy of applying interventions exclusively
during either the training or testing phase, creating a mismatch.
Nevertheless, similar to findings in [28], we also observed that
interventions involving loudness were generally less impactful
compared to other types of interventions across all evaluations.

5. Conclusion
This paper has conducted an in-depth investigation into the behavior
of audio anti-spoofing models through various experiments focused
on loss analysis and asymmetric interventions. Our analyses
expand the perspective beyond attack-centric or silence-focused
interpretations. The findings suggest that current training practices,
which primarily aim to detect spoofing artifacts in known attacks,
may neglect the robust modeling of bona fide speech, potentially
introducing bias in model learning. By advocating for a more
balanced focus on understanding both bona fide and spoofed classes,
our research paves the way for future studies to enhance the efficacy
of audio anti-spoofing systems.

2The second question is related to the analysis in Section 4.2, where
we want to clarify whether performance degradation stems from suddenly
appearing unseen domains in the test phase.
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